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JINGXUAN ZHANG

Consider the Ginzburg-Landau equations functions on a bounded domain  C R?:
{ — AT = K21 - |TH)T,

(GL) -
d*dA = S(TV4T).

Here > 0 is a material constant, ¥(z) is a complex-valued function, A is a real-valued 1-form, V 4 := V + ¢4 is the
the covariant derivative induced by A, and d is the exterior derivative mapping p-forms to p + 1 forms.
(GL) has U(1)-gauge symmetry, in the sense that if p € C*(2,U(1)), then
. -1
T5mee (U, A) = (p(x)¥(z), A—p~ (z)dp(x))

maps solutions to solutions.
There are three associated physical quantities:

|\I/|2 is the local density of (Cooper pairs of) superconducting electrons,
(1) dA is the magnetic field,
J(UV4P) is the supercurrent density.

The basic non-trivial solutions are called magnetic vortices. These are some local structure with finite energy and
non-trivial topological degree. Call a solution (¥, A) to (GL) an Abrikosov lattice if the associated quantities in are

FIGURE 1. Here shows a cross section of a vortex solution W, A near a core at r = 0, where the
superconducting electron density |¥| vanishes and the magnetic field curl A penetrates. For an N-
vortex, the order parameter ¥ winds around the center N times, and the penetrating field has NV
quanta of magnetic flux.

all periodic w.r.t. some planar lattice A = Zv; 4+ Zvs (i.e. invariant under translation by elements in A). In my last talk
I showed (¥, A) is a lattice solution <=

(2)

{\I/(ac +5) = 9@ (),
A(x + s) = A(x) + Vgs(x).

where g satisfies the cocycle condition:
(3) gs+t(z) — gi(x + 5) — gs(x) € 27 (s,t €A).

The function €*9(®) is called automorphy factor. Two automorphy factors e9:(*) and €9:(*) are said to be equivalent
if they satisfy g’(x) = gs(2) + x(x + s) — x(z) for some function x. A function ¥ that satisfies T2 W = e9: (@) is
said to be a e9:(*) _theta function. Gunning in his classification of automorphy factors [3, Theorem 2] shows that every
gauge-exponent g, satisfying —, is equivalent to

_ 1
és-Ja:—i—cs, (J = 0 -1 b= — [ dA)
(4) 2 1.0 12 Jo

b
cs+t—cs—ct—§s-Ja:€27rZ.

Assume well-posedness for the moment.
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FIGURE 2. A fundamental cell 2 tessallates R? under translations in the lattice group .

Toric geometry. Fix a fundamental cell €2 of the underlying lattice A, and identify the opposite sides of the
parallelogram €. Consider a vortex solution to on Q. Then (2) allows one to extend this solution to the entire
plane, since  tessellates R2.

Thus Abrikosov lattices can be viewed as vortices defined on the flat torus T = R?/\, which is homeomorphic to the
standard torus through

Q 3 avy + by = (€27, 207,

Main result. In what follows, we show Abrikosov lattices satisfying correspond to sections of and connection on

L — T, where L = (R? x C)/\ is the line bundle over complex torus. Here the action of \ is

(z,0) = (x4 5,9 @) (seN).

Note L, T are manifold which locally look like R? x C,R? resp.. L is non-trivial in the sense that L # R? x V for
any vector space V. Recall for a line bundle L P X, a section isamap s: X — L s.th. pos=1. A connection V
maps sections on L to 1-forms on L, and satisfies Leibnitz rule V(fs) = fVs + df ® s.

Claim: there exists an 1-1 correspondence between equivariant states satisfying and sections of and connections
on L, given by

(5) ¢([2]) = [(z, ¥(z))],  Vo([z]) = [Va¥(z)],
where V41 ~ V4 " if (W', A") = T§*&°(¥, A) for some p.

Proof. First check is well-defined. If 2’ = x + s for some s € A, then by U = U(z 4 5) = 9@V (z) ~ T(x).
Thus (z/, V') ~ (x, V). Similarly, (VA¥)(z + 5) = V(a4vg.)e? @ W(z) ~ V4 ¥ through TE™ee,

It follows from the definition that is 1-1. Conversely, given a section ¢ on L, construct an equivariant solution as
follows. For z € (, since there is only one ¥ satisfying ¢([z]) = [(x, ¥)]. Define ¥(x) = ¥. Then extend to R? by
and some gauge exponent, say , which satisfies the cocycle condition . Similarly one can define 1-form A from a
connection V on L. O

Hyperbolic geometry. In a more genereal setting, one can consider on generic compact connected orientable
Riemann surfaces, classified by genus g. We have discussed the cases for ¢ = 0 (planar domain) and g = 1 (torus).

Let H := {z € C|S2z > 0} be the Poincare half-plane, equipped with metric ds = |dz|/S%z. This has Gaussian
curvature -1 (hyperbolic). The group SL(2,R) represented by Mobius transforms acts on (H,ds) as isometries. A
Fuchsian group is a discrete subgroup of PSL(2,R) := SL(2,R)/{£1}. (E.g. PSL(2,Z7), the modular group.) One
can show that if a compact RS has g > 1, then it is homeomorphic to H/T for some Fuchsian group I' acting freely (i.e.
no fixed point).

Let L % X be the line bundle L := (H x C)/T, where the action is
(2,9) = (35,69 @W) (v ET),
for some automorphy factor g, (x) satisfying the cocycle condition
(6) 9yy (@) — g5 (vx) — gy (x) € 27Z. (7,7 €T).
To generalize the notion of Abrikosov lattice, call (¥, A) an I'-equivariant solution iff
(yz) = 0 (a),
{A('yx) = A(z) + dgy(2),

for some automorphy factor g, satisfying @ The problem now is how to calculate the automorphy factor g, in terms
of the connection A, in a fashion similar to (2). This is done for instance in [2]. See also lecture notes [4, Section 14].

Basic existence result |1]. k= 1/v/2, |Q| > 4rN = there exists solution (¥, A) to s.th. deg¥ = ﬁ JodA =
N. These solutions are called N vortices.

(7)
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For x = 1/4/2, using intergration by parts one can show that the energy functional split into two parts:

E(A,W) = %/ﬂ
1

=3 /Q {((31\111 + A1 Ty) — (09T — AW )2 + (020 + ApWy) — (01Wy — A1)+

{|VA\I/|2 + (curl A)% + i(|\11|2 - 1)2}

+(curl A + %(\IJ% + U3 — 1))2} + %/ curl A
Q

1
> 7/ curl A =7N.
2 Ja
The first part is a sum of squares, and the second part gives a lower bound on the energy by the topological quantity
N. This equality is attained iff the first integral is zero, i.e.,
(01¥1 + A1 Tg) — (02Wy — AyWy) =

0.
(8) (82\1/1 + AQ\IJQ) — (81\1/2 — Al\Ill) =0

9

1
curl A + 5(\11% + 03 —1)=0.

These are called the Bogomolny equations.
Consider the third Bogolmony equation

cur1A+%(\\IJ|2fl):O = cwrld = 1(17\xp|2).

2
Integrating this over €2, one gets an upperbound on the vortex number N in terms of the area of the domain:
1 1 1
(9) QWN:/CurlA:/ 7(17|\p|2)</7:7|9| < |Q| > 47 N.
I Q2 Q2 2

This is called the Bradlow condition. In [1], Bradlow shows that the upperbound in @ holds if €2 is replaced by a
compact Kéhler manifold of arbitrary dimension. (To derive this in the general setting, the Bogolmony equation has to
be modified appropriately.)
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