GINZBURG-LANDAU THEORY ON RIEMANN SURFACES

JINGXUAN ZHANG

Consider the Ginzburg-Landau equations functions on a bounded domain $\Omega \subset \mathbb{R}^{2}$:

$$
\left\{\begin{array}{l}
-\Delta_{A} \Psi=\kappa^{2}\left(1-|\Psi|^{2}\right) \Psi \tag{GL}\\
d^{*} d A=\Im\left(\bar{\Psi} \nabla_{A} \Psi\right)
\end{array}\right.
$$

Here $\kappa>0$ is a material constant, $\Psi(x)$ is a complex-valued function, A is a real-valued 1-form, $\nabla_{A}:=\nabla+i A$ is the the covariant derivative induced by A, and d is the exterior derivative mapping p-forms to $p+1$ forms.
(GL) has $U(1)$-gauge symmetry, in the sense that if $\rho \in C^{1}(\Omega, U(1))$, then

$$
T_{\rho}^{\text {gauge }}:(\Psi, A) \mapsto\left(\rho(x) \Psi(x), A-\rho^{-1}(x) d \rho(x)\right)
$$

maps solutions to solutions.
There are three associated physical quantities:

$$
\left\{\begin{array}{l}
|\Psi|^{2} \text { is the local density of (Cooper pairs of) superconducting electrons, } \tag{1}\\
d A \text { is the magnetic field, } \\
\Im\left(\bar{\Psi} \nabla_{A} \Psi\right) \text { is the supercurrent density. }
\end{array}\right.
$$

The basic non-trivial solutions are called magnetic vortices. These are some local structure with finite energy and non-trivial topological degree. Call a solution (Ψ, A) to (GL) an Abrikosov lattice if the associated quantities in (1) are

Figure 1. Here shows a cross section of a vortex solution Ψ, A near a core at $r=0$, where the superconducting electron density $|\Psi|$ vanishes and the magnetic field curl A penetrates. For an N vortex, the order parameter Ψ winds around the center N times, and the penetrating field has N quanta of magnetic flux.
all periodic w.r.t. some planar lattice $\lambda=\mathbb{Z} v_{1}+\mathbb{Z} v_{2}$ (i.e. invariant under translation by elements in λ). In my last talk I showed (Ψ, A) is a lattice solution \Longleftrightarrow

$$
\left\{\begin{array}{l}
\Psi(x+s)=e^{i g_{s}(x)} \Psi(x) \tag{2}\\
A(x+s)=A(x)+\nabla g_{s}(x)
\end{array}\right.
$$

where g satisfies the cocycle condition:

$$
\begin{equation*}
g_{s+t}(x)-g_{t}(x+s)-g_{s}(x) \in 2 \pi \mathbb{Z} . \quad(s, t \in \lambda) \tag{3}
\end{equation*}
$$

The function $e^{i g_{s}(x)}$ is called automorphy factor. Two automorphy factors $e^{i g_{s}(x)}$ and $e^{i g_{s}^{\prime}(x)}$ are said to be equivalent if they satisfy $g_{s}^{\prime}(x)=g_{s}(x)+\chi(x+s)-\chi(x)$ for some function χ. A function Ψ that satisfies $T_{s}^{\text {trans }} \Psi=e^{g_{s}(x)} \Psi$ is said to be a $e^{i g_{s}(x)}$-theta function. Gunning in his classification of automorphy factors 3 , Theorem 2] shows that every gauge-exponent g_{s} satisfying (2)-(3), is equivalent to

$$
\left\{\begin{array}{l}
\frac{b}{2} s \cdot J x+c_{s}, \quad\left(J:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), b=\frac{1}{|\Omega|} \int_{\Omega} d A\right) \tag{4}\\
c_{s+t}-c_{s}-c_{t}-\frac{b}{2} s \cdot J x \in 2 \pi \mathbb{Z}
\end{array}\right.
$$

Assume well-posedness for the moment.

Figure 2. A fundamental cell Ω tessallates \mathbb{R}^{2} under translations in the lattice group λ.

Toric geometry. Fix a fundamental cell Ω of the underlying lattice λ, and identify the opposite sides of the parallelogram Ω. Consider a vortex solution to GL on Ω. Then 2 allows one to extend this solution to the entire plane, since Ω tessellates \mathbb{R}^{2}.

Thus Abrikosov lattices can be viewed as vortices defined on the flat torus $\mathbb{T}=\mathbb{R}^{2} / \lambda$, which is homeomorphic to the standard torus through

$$
\Omega \ni a v_{1}+b v_{2} \mapsto\left(e^{2 \pi a i}, e^{2 \pi b i}\right)
$$

Main result. In what follows, we show Abrikosov lattices satisfying (2) correspond to sections of and connection on $L \rightarrow \mathbb{T}$, where $L=\left(\mathbb{R}^{2} \times \mathbb{C}\right) / \lambda$ is the line bundle over complex torus. Here the action of λ is

$$
(x, \Psi) \mapsto\left(x+s, e^{i g_{s}(x)} \Psi\right) \quad(s \in \lambda)
$$

Note L, \mathbb{T} are manifold which locally look like $\mathbb{R}^{2} \times \mathbb{C}, \mathbb{R}^{2}$ resp.. L is non-trivial in the sense that $L \neq \mathbb{R}^{2} \times V$ for any vector space V. Recall for a line bundle $L \xrightarrow{p} X$, a section is a map $s: X \rightarrow L$ s.th. $p \circ s=1$. A connection ∇ maps sections on L to 1-forms on L, and satisfies Leibnitz rule $\nabla(f s)=f \nabla s+d f \otimes s$.

Claim: there exists an 1-1 correspondence between equivariant states satisfying (2) and sections of and connections on L, given by

$$
\begin{equation*}
\phi([x])=[(x, \Psi(x))], \quad \nabla \phi([x])=\left[\nabla_{A} \Psi(x)\right], \tag{5}
\end{equation*}
$$

where $\nabla_{A} \psi \sim \nabla_{A^{\prime}} \Psi^{\prime}$ if $\left(\Psi^{\prime}, A^{\prime}\right)=T_{\rho}^{\text {gauge }}(\Psi, A)$ for some ρ.
Proof. First check (5) is well-defined. If $x^{\prime}=x+s$ for some $s \in \lambda$, then by (2) $\Psi^{\prime}=\Psi(x+s)=e^{i g_{s}(x)} \Psi(x) \sim \Psi(x)$. Thus $\left(x^{\prime}, \Psi^{\prime}\right) \sim(x, \Psi)$. Similarly, $\left(\nabla_{A} \Psi\right)(x+s)=\nabla_{\left(A+\nabla g_{s}\right)} e^{i g_{s}(x)} \Psi(x) \sim \nabla_{A} \Psi$ through $T_{g_{s}}^{\text {gauge }}$.

It follows from the definition that (5) is 1-1. Conversely, given a section ϕ on L, construct an equivariant solution as follows. For $x \in \Omega$, since there is only one Ψ satisfying $\phi([x])=[(x, \Psi)]$. Define $\Psi(x)=\Psi$. Then extend to \mathbb{R}^{2} by (2) and some gauge exponent, say (3), which satisfies the cocycle condition (3). Similarly one can define 1 -form A from a connection ∇ on L.

Hyperbolic geometry. In a more genereal setting, one can consider GL on generic compact connected orientable Riemann surfaces, classified by genus g. We have discussed the cases for $g=0$ (planar domain) and $g=1$ (torus).

Let $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im z>0\}$ be the Poincare half-plane, equipped with metric $d s=|d z| / \Im z$. This has Gaussian curvature - 1 (hyperbolic). The group $S L(2, \mathbb{R})$ represented by Mobius transforms acts on ($\mathbb{H}, d s$) as isometries. A Fuchsian group is a discrete subgroup of $P S L(2, \mathbb{R}):=S L(2, \mathbb{R}) /\{ \pm \mathbf{1}\}$. (E.g. $P S L(2, Z)$, the modular group.) One can show that if a compact RS has $g>1$, then it is homeomorphic to \mathbb{H} / Γ for some Fuchsian group Γ acting freely (i.e. no fixed point).

Let $L \xrightarrow{p} X$ be the line bundle $L:=(\mathbb{H} \times \mathbb{C}) / \Gamma$, where the action is

$$
(x, \Psi) \mapsto\left(\gamma s, e^{i g_{\gamma}(x)} \Psi\right) \quad(\gamma \in \Gamma)
$$

for some automorphy factor $g_{\gamma}(x)$ satisfying the cocycle condition

$$
\begin{equation*}
g_{\gamma \gamma^{\prime}}(x)-g_{\gamma}^{\prime}(\gamma x)-g_{\gamma}(x) \in 2 \pi \mathbb{Z} . \quad\left(\gamma, \gamma^{\prime} \in \Gamma\right) \tag{6}
\end{equation*}
$$

To generalize the notion of Abrikosov lattice, call (Ψ, A) an Γ-equivariant solution iff

$$
\left\{\begin{array}{l}
\Psi(\gamma x)=e^{i g_{\gamma}(x)} \Psi(x) \tag{7}\\
A(\gamma x)=A(x)+d g_{\gamma}(x)
\end{array}\right.
$$

for some automorphy factor g_{γ} satisfying (6). The problem now is how to calculate the automorphy factor g_{γ} in terms of the connection A, in a fashion similar to (2). This is done for instance in 2]. See also lecture notes [4, Section 14].

Basic existence result 1|. $\kappa=1 / \sqrt{2},|\Omega|>4 \pi N \Longrightarrow$ there exists solution (Ψ, A) to (GL) s.th. $\operatorname{deg} \Psi=\frac{1}{|\Omega|} \int_{\Omega} d A=$ N. These solutions are called N vortices.

For $\kappa=1 / \sqrt{2}$, using intergration by parts one can show that the energy functional split into two parts:

$$
\begin{aligned}
E(A, \Psi) & :=\frac{1}{2} \int_{\Omega}\left\{\left|\nabla_{A} \Psi\right|^{2}+(\operatorname{curl} A)^{2}+\frac{1}{4}\left(|\Psi|^{2}-1\right)^{2}\right\} \\
& =\frac{1}{2} \int_{\Omega}\left\{\left(\left(\partial_{1} \Psi_{1}+A_{1} \Psi_{2}\right)-\left(\partial_{2} \Psi_{2}-A_{2} \Psi_{1}\right)\right)^{2}+\left(\left(\partial_{2} \Psi_{1}+A_{2} \Psi_{2}\right)-\left(\partial_{1} \Psi_{2}-A_{1} \Psi_{1}\right)\right)^{2}+\right. \\
& \left.+\left(\operatorname{curl} A+\frac{1}{2}\left(\Psi_{1}^{2}+\Psi_{2}^{2}-1\right)\right)^{2}\right\}+\frac{1}{2} \int_{\Omega} \operatorname{curl} A \\
& \geq \frac{1}{2} \int_{\Omega} \operatorname{curl} A=\pi N
\end{aligned}
$$

The first part is a sum of squares, and the second part gives a lower bound on the energy by the topological quantity N. This equality is attained iff the first integral is zero, i.e.,

$$
\begin{align*}
& \left(\partial_{1} \Psi_{1}+A_{1} \Psi_{2}\right)-\left(\partial_{2} \Psi_{2}-A_{2} \Psi_{1}\right)=0 \\
& \left(\partial_{2} \Psi_{1}+A_{2} \Psi_{2}\right)-\left(\partial_{1} \Psi_{2}-A_{1} \Psi_{1}\right)=0 \tag{8}\\
& \operatorname{curl} A+\frac{1}{2}\left(\Psi_{1}^{2}+\Psi_{2}^{2}-1\right)=0
\end{align*}
$$

These are called the Bogomolny equations.
Consider the third Bogolmony equation

$$
\operatorname{curl} A+\frac{1}{2}\left(|\Psi|^{2}-1\right)=0 \Longleftrightarrow \operatorname{curl} A=\frac{1}{2}\left(1-|\Psi|^{2}\right)
$$

Integrating this over Ω, one gets an upperbound on the vortex number N in terms of the area of the domain:

$$
\begin{equation*}
2 \pi N=\int_{\Omega} \operatorname{curl} A=\int_{\Omega} \frac{1}{2}\left(1-|\Psi|^{2}\right)<\int_{\Omega} \frac{1}{2}=\frac{1}{2}|\Omega| \Longleftrightarrow|\Omega|>4 \pi N \tag{9}
\end{equation*}
$$

This is called the Bradlow condition. In [1], Bradlow shows that the upperbound in (9) holds if Ω is replaced by a compact Kähler manifold of arbitrary dimension. (To derive this in the general setting, the Bogolmony equation has to be modified appropriately.)

References

[1] Steven B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1-17. MR1086749
[2] D. Chouchkov, N.M. Ercolani, S. Rayan, and I.M. Sigal, GinzburgLandau equations on Riemann surfaces of higher genus, Annales de l'Institut Henri Poincar C, Analyse non linaire (2019).
[3] R. C. Gunning, The structure of factors of automorphy, Amer. J. Math. 78 (1956), 357-382. MR84839
[4] Israel Michael Sigal, Lectures on applied partial differential equations, http://www.math.toronto.edu/sigal/ApplPDE2019S.pdf, 2019 (accessed Janurary 21, 2020).

