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1. Introduction

Consider an abstract evolution equation

(1) ∂tu = −J−1E′(u).

Here u(t) ∈ X is a path in some closed set X in a real Hilbert space H. E : H → R∪{∞} is a functional, which is finite
and smooth on X. E′(u) ∈ H is the gradient (w.r.t. the inner product of H) of E at u. The operator J : T ∗uX → TuX
is either the identity or a symplectic operator, which respectively turns (1) into either a first-order energy dissipative
dynamics, or a Hamiltonian system. In the first case we take H = Hs

loc, consisting of functions from Rn → Rm whose
restriction on any domain Ω ⊂ Rn belongs to the Sobolev space Hs(Ω,Rm) of order s > 0. In the latter case, we take
H = Hs

loc ×Hr
loc, whence J can be written as the standard block matrix. We are interested in the following problem:

Given a low energy intial configuration u0 ∈ H for (1), which is stable and spatially concentrated in
some subset of its domain, can one reduce the system (1) to an evolution of the concentration set?

Such low energy, stable, and localized configurations are called solitons. Depending on the specific context, one
can make different definitions for these three qualitative descriptions. The reduced evolution we seek is the effective
dynamics of the full evolution (1). The point is that so long as a path u(t) ∈ X solving (1) remains solitonic, (1) does
not contain much information away from the concentration sets of u(t). In this study we propose an abstract scheme
to derive effective dynamics for (1).

Essentially, our method is a nonlinear perturbation theory. This is known in the physics literature as adiabatic
approximation. The idea dates back at least to Manton’s moduli space approximation scheme for monopole dynamics
[Man82]. Rigorous results along this line include [Stu94a, Stu94b, OS98a, OS98b, GS06, DS09, Tin10, CFS18], with
diverse applications to superfluidity, superconductivity, particle physics, and geometric flow. The point in common of
these applications is that solitonic equilibria of (1) arise naturally due to focusing nonlinearity, or some kind of fixed
content constraint.

Our argument goes roughly as follows: First, we construct a parametrized family of configurations uσ ∈ X,σ ∈ Σ,
where Σ is the space of all possible concentration sets. The space Σ is finite-dimensional if the concentration sets are
finitely many points. In general Σ is a space of geometric objects. Each vσ is an approximate minimizer of the energy
E, so that E′(vσ) is uniformly close to the zero function, and the Hessian (i.e. the linearized operator of E′(u) at u) is
in some sense positive. We call this family vσ the approximate solitons. Next, we find an evolution equation ∂tσ = F (σ)
for a path σ with the following property: If u(t) solves (1) with an intitial configuration close to an approximate soliton
vσ0

, then u(t) stays close to the path of approximate solitons vσ(t), with σ(t) generated by the equation for σ from some
σ1 close to σ0. This equation for σ is the effective dynamics for (1). The function F (σ) can be calculated explicitly,
provided one has precise information of the parametrization σ 7→ uσ as well as its Fréchet derivative. This argument
also shows that the evolution for σ is actually independent of the parametrization. In this step we use the properties of
uσ as approximate energy minimizer. Lastly, we show the converse holds, in the sense that for a path vσ(t) as above,
we can find a uniformly small correction w(t) s.th. v(t) + w(t) solves (1).

We refer the readers to an excellent review on specific applications of the adiabatic approximation to classical field
theory [Stu07]. We believe however the present abstract formulation is new. Indeed, we list three conditions (6)-(8)
under which addiabatic approximation is valid. One of our main points is that these conditions do not require a
large space of equilibria of (1). We can do with just approximate ones. This has a particular advantage when one is
interested in multi-soliton dynamics, for which approximation through equilibria can only be done with satisficatory
validity within a certain range of parameters that comes with the problem, which is close to a critical value variously
known as the Bogomolnyi or self-dual regime. The problem at this critical parameter tends to assume an unusually
large space of equilibria, which can then serve as the space of approximate solitons for the problem with near-critical
parameter. Heuristically, this is because the space of equilibria changes continuously as the parameter in the problem
varies. The aforementioned review [Stu07] surveys some key problems that fall into this category.

The validity of approximation is determined by how close the approximate solitons are to the exact ones. We isolate
a constraint (18), which shows how the conditions (6)-(8) affect the time interval on which the adiabatic approximation
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is valid. In particular, (18) shows that as the approximation space tends to the space of equilibria, the validity of
approximation improves. This then agrees with the known results [Stu94a,Stu94b,DS09] in near Bogolmonyi regime.

This is largely motivated by a seminal work of Gustafson and Sigal [GS06], on the motion of magnetic Ginzburg-
Landau vortices under parabolic and hyperbolic dynamics. Similar methods are used in [OS98a,OS98b,Per04] to study
multi-solitons in nonlinear Schrödinger equations. In these papers, the authors construct some explicit low energy
approximate equilibira, using only the fast localizing property of the single exact solitons. This is readily availble
even apart from the Bogomolnyi regime. which extends earlier result of [Stu94a] beyond the Bogomolnyi case. The
caveat is that one must then require some spatial separation condition, which ensures each manufactured approximate
multi-soliton indeed behaves like a single soliton near each of its localization point. This undermines applications to
scattering theory, an issue we shall return to at the end of Section 2.

We shall also mention another context when the problem of effective dynamics arise. Namely, the effective dynamics
of the concentration sets can be determined by the geometry of the latter. This is the now classical geometric theory
of phase transitions [Mod87,ESS92,PR03], which connects the flow of a real order parameter under the Allen-Cahn
equation to the mean curvature flow of its nodal set. This connection has important consequences to both sides
of statistical physics and geometric analysis. On the mathematical side, we mention the resolution of De Giorgi’s
conjecture [dPKW11] among others. See an excellent review [Jer14] on the analogous codimension-two problems, which
remain largely open. The author is undertaking to apply the theory we develop here to this end.

2. Effective dynamics

Let Σ be a manifold representing all possible concentration sets of interest. For instance, if one is interested in the
nucleation at n points in Rd, then one can take Σ = Rnd. If one is intereted in the motion of a closed filament in Rd,
then one can take Σ = Emb(S1,Rd), an so on.

Suppose we have a C2 map f : Σ→ X whose Fréchet derivative df(σ) : TσΣ→ Tf(σ)X is injective for every σ. NB :
the tangent space Tf(σ)X can be locally trivialized as a Hilbert space H1, but H1 does not necessarily coincide with
either X or H. For instance, if X = 1 +Hs ⊂ Hsloc, then H1 = Hs. If X = {u ∈ H : J(u) = 0} for some constraint
functional J : H → R ∪ {∞}, then then H1

∼= {v ∈ H : 〈J ′(u), v〉 = 0} = ker dJ(u). This is a nontrivial technicality.
See Sections 3-4 for examples when this problem arises.

The map f is an immersion, so M := f(Σ) forms a submanifold of X, with tangent space at vσ := f(σ) given by
Tvσ = df(σ)(TσΣ). This is a subspace of TvσX. We shall call M the space of approximate solitons. Here and below, by
solitons we shall mean qualitatively such configurations that remain coherent under the flow (1), and quantitatively
satisfy (6)-(8). An important characteristic of nonlinear dynamics is the existence of solitons due to the focusing effect
of the nonlinearity.

We are interested in the initial value problem

(2)

{
∂tu = −E′(u),

u|t=0 = u0.

Suppose u0 ∈ X0 ⊂ X where X0 is a sufficiently small tubular neighbourhood of M . This means that u0 is close to
some vσ0

= f(σ0). Let u(t) be a path solving (2). The goal is to reduce (2) under suitable assumptions to an evolution
of σ

(3)

{
∂tσ = F (σ),

σ|t=0 = σ1

Here F is independent of v, and σ1 is close to σ0. Moreover, ‖u(t)− vσ(t)‖H remains uniformly small up to a large but
possibly finite time, with σ(t) solving (3).

There are three key steps in this reduction. First, we construct a coordinate map S : X0 → Σ, s.th. the approximate
soliton vS(u) = f(S(u)) ∈M serves as an optimal approximation of a given configuration u ∈ X0. Next, revertin]g the
parametrization of the approximation path vσ(t), with σ(t) = S(u(t)), we get an equation for σ as in (3), so long as
u(t) remains in X0. Lastly, we show under suitable conditions on the approximate solitons, namely condition (6)-(8),
the path u(t) actually remains in X0 for a long time.

The coordinate map. Here we determine a subset of M on which the subsequent orthogonal decomposition is possible.
The point is to keep the operators involved to be uniformly bounded on this set.

Lemma 2.1. Suppose the Fréchet derivative res df : Σ0 → L(Y,H1) is uniformly bounded on a submanifold Σ0 ⊂ Σ.
Then the (orthogonal or symplectic) projections Qσ : H1 → Tf(σ)M are uniformly bounded in σ ∈ Σ0.

Proof. This essentially follows the definition of Qσ. Define gσ : Y → H1 by gση = df(σ)η where abusing notation we
identify the coordinate of η ∈ TσΣ with its coordinate in Y . This map is uniformly bounded in σ as df does. Let
g∗σ : H∗1 → Y ∗ be the adjoint of gσ. The map Pσ := g∗σJ

−1gσ : Y → Y ∗ is invertible because df is injective.
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The projections from H1 onto the tagent space H2 are given by Qσ := gσP
−1
σ g∗σJ

−1. From this formula one observes
that Qσ is uniformly bounded in σ as each of its factor does. �

Remark. Here and below, to simplify notation, whenever a basis is understood, we shall identify the coordinate of
an element in a tangent space with the element itself.

For later use, we record that if J is symplectic, then Pσ induces a simplectic form on Y by 〈τ, Pσρ〉. The normal
space of M at uσ is related to Qσ by the relation kerQσ = (JH2)⊥ ⊂ H1.

Lemma 2.2 (Existence of coordinate). There exists an open set X0 ⊂ X and a C1 map S : X0 → Σ s.th.

(4) QS(u)(u− f(S(u))) = 0.

Moreover, if σ′ satisfies Qσ′(u− f(σ′) = 0, then σ′ = S(u).
Moreover, if the three maps f , res df : Σ0×L(Y,H1) and res d2f : Σ0×L(Y,L(Y,H1)) ∼= L2(Y,H1) are all uniformly

bounded in σ, then one can make S(X0) ⊂ Σ0.

Proof. Let X0 be a tubular neighbourhood of f(Σ0), whose size is to be determined. Consider the map

h : X0 × Σ0 → Y

given by h(u, σ) 7→ g∗σ(u− f(σ)). This map is well-defined for every pair (u, σ) ∈ X0 × Σ0 s.th. ‖u− f(σ)‖H ≤ β for
any fixed β > 0 independent of σ. The point is that that the difference u− f(σ) ∈ H, but needs to to be a subset of H1.

By construction, dσh = −Pσ is invertible (see Lemma 2.1). The equation

h(u, σ) = 0

obviously has the solution (f(σ′), σ′) for every σ′ ∈ Σ0. Thus by the Implicit Function Theorem, for every σ′ there is a
neighbourhood Uf (σ′) ⊂ X0 around vσ′ = f(σ′) and a map S : Uf (σ′)→ Σ that solves the last equation.

Shrink each Uf (σ′) so that S(Uf (σ′)) ⊂ Σ0. Shrink X0 to be the union of all these Uf (σ′). Then we get a map

h(u, S(u)) = 0 (u ∈ X0, S(X0) ⊂ Σ0.)

The orthogonality condition (4) follows from the last equation (see the definition of Qσ in Lemma 2.1). Uniqueness
follows by the Implicit Function Theorem.

A priori, as σ′ vary in Σ0, the size of Uf(σ′) can depend on σ′. Yet so long as the maps

h(·, σ′) = g∗σ′(· − f(σ′)),

dσhσ′(·, σ′) = −Pσ′ ,
d2σhσ′(·, σ′) = g∗σ′d

2f(σ′)

are all uniformly bounded in σ′ ∈ Σ, the size of Uf(σ) can be made uniform in σ′ as well [AP95, Section 2]. These
maps are indeed uniformly bounded by the assumptions on f and its Fréchet derivatives. Thus it is possible to shrink
X0 to be a small ε-tubular neighbourhood of f(Σ0). �

Remark. For u ∈ X0, the element S(u) ∈ Σ0 serves as the coordinate of u in Σ. The orthogonality condition (4)
ensures that the approximate soliton vS(u) ∈M is the optimal approximation of u. The map f ◦ S can be viewed as a
nonlinear projection from X0 into M . Geometrically, the coordinate σ := S(u) is characterized by the condition

(u− vσ) ⊥ JTvσM.

This implies that if u, u′ differs by an element in (JTvσM)⊥, or an element in M , then S(u) = S(u′).
In what follows we shall call an immmersion f with the uniformly boundedness property as in Lemma 2.2 admissible.

If f is only admissible on Σ0 (, then we shrink Σ to Σ0.
The orthogonal decomposition. By Lemmas 1-2, any path u(t) ∈ X0 admits a decomposition

(5) u = v + w, v(t) := f(σ(t)), σ(t) := S(u(t)), Qσ(t)w(t) ≡ 0,

We now state our main result in this section. NB. For simplicity, in what follows we make an implicit assumption that
the linearized operator Lσ = E′′(f(σ)) is self-adjoint. This is realistic for most applications, see the examples in the
following sections.

Theorem 2.3 (Main). Given 0 < ε � 1, let u0 ∈ X0 be an element s.th. ‖u0 − v0‖H ≤ ε for some v0 ∈ M . Let
u(t) ∈ X, t ≤ T be a solution to (2).

Suppose f is an admissible immersion of Σ. Suppose there are ε1, ε2 ≥ 0, δ > 0 s.th. δ � ε1, ε2, and for every
(σ, v, ξ, w) ∈ Σ×M × ranQσ × kerQσ, we have

‖E′(v)‖H ≤ ε1 (approximate critical point),(6)

‖Lσξ‖H ≤ ε2‖ξ‖H (approximate zero-mode),(7)

|〈Lσw,w〉| ≥ δ‖w‖2H (coercivity).(8)
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Then u(t) ∈ X0 for t ≤ T1 = O(δ/ε22), and there exist c, C,C ′ > 0 independent of t ≤ T1 s.th. for the decomposition
u(t) = v(t) + w(t) as in (5),

(9) ∂tσ = −P−1σ dσE(f(σ)) +O(ε), ‖w(t)‖H ≤ C ′(ε+ ε1) (t ≤ T1).

Conversely, suppose ∂tσ = −P−1σ dσE(f(σ)) and v(t) = f(σ(t). Then there exists u(t) = v(t) + w(t) ∈ X0, t ≤ T2 =
O(1/ε1) s.th. u(t) solves (1), and ‖w(t)‖ ≤ Cε1.

Remark. Let E(σ) := E(f(σ)). Define J : T ∗σΣ → TσΣ by its action on the coordinate, Y 3 ρ 7→ Pσρ. If J in
(1) is a symplectic operator on the tangent bundle TX, then J a symplectic operator on Tσ. This follows from the
construction of Pσ in Lemma 2.1.

We call the evolution

(10)

{
∂tσ = −J−1E ′(σ),

σ|t=0 = S(u0),

the effective dynamics associated to (2). It follows from the discussion above that this evolution is of the same type
(i.e. gradient flow or Hamiltonian system) as (1).

The existence of F depends on the injectivity of df(σ). The time interval on which (10) is valid depends on the
conditions (6)-(8). These conditions specify how the manifold M should interplay with the energy E: (6),(8) suggest
that M should lie near the energy bottom of E, while (7) says that the tangent space Tf(σ))M should consists of
approximately the zero-modes of the linearized operator E′′(f(σ)). Lemma 2.4 below show how (6)-(8) provide the
remainder estimate on ‖w(t)‖H , depending on the type of evolution (1).

Proof of Theorem 2.3. To simplify notations, in what follows we do not display the dependence on t.
Plugging (5) into (2), we have

(11) ∂tv + ∂tw = −J−1E′(v + w).

Expanding r.h.s. of (11) at v, and then applying Qσ = Qσ(t) to both sides of (11), we have

(12) ∂tv +QσJ
−1E′(v) = −QσJ−1Lσw −QσJ−1Nσ(w)−Qσ∂tw.

Here the linear operator Lσ := E′′(vσ), and the nonlinearity Nσ is deterined by this expression.
L.h.s. of (12) can be written as

(13) ∂tv +QσJ
−1E′(v) = gσ(∂tσ + J−1E ′(σ)).

Here we use the identities ∂tv = gσ∂tσ, and g∗σE
′(v) = dσE(f(σ)) = E ′(σ), where the last term is the Y -gradient of the

functional E ◦ f : Y → R. These identities follow directly from definition and the chain rule. Since g∗σ is injective, it
has bounded inverse on its range. It follows that ‖∂tσ + J−1E ′(σ)‖Y is bounded by the H-norm of the r.h.s (12).

We now bound the r.h.s. of (12) uniformly in time. The first two terms are of the order O(‖w‖H), since Qσ is
uniformly bounded and E is smooth on X. The third term is bounded as ‖Q∂tw‖H ≤ ‖∂tσ‖‖w‖. In Lemma 2.4 below
we show ‖∂tσ‖Y is uniformly bounded by ε1ε2, so in fact ‖Q∂tw‖H ≤ C‖w‖ in dependent of ∂tσ.

Now each term in the r.h.s. of (12) is bounded by ‖w(t)‖H . To conclude (9), we show ‖w(0)‖H ≤ C‖w0‖H where
w0 := u0 − v0. (This is trivial if v0 is X-closest to u0, which we do not assume.) The rest follows from (15).

Write v0 = f(σ0) with σ0 ∈ Σ. Using the uniform boundedness of S and its local inverse (which exists by the IVT,
with the regularity of S as in Lemma 2.2), we compute

‖w0‖H ≥ C‖S(w0)‖Y = C‖S(v(0)− v0)‖Y ≥ C ′‖v(0)− v0‖Y .

Here we use that S(w0) = S(v(0) − v0) as w0 and v(0) − v0 differs by an vector perpenticular to Tv(0)M , and
S(v(0)) = S(w0). Combining the preceding estimate in the identity,

w(0) = v0 − v(0) + w0

we have ‖w(0)‖H ≤ C‖w0‖.
Conversely, we want to solve for w from (11), with a given path v(t) ∈M satisfying ∂tv +QσJ

−1E′(v) = 0. This
gives an evolution for w as

∂tw = −J−1Lσw − J−1Nσ(w)− Q̄σE′(v).

Here Q̄σ = 1−Qσ. The last term is of the order O(ε1). We can cast this into a fixed point problem with self-adjoint
Lσ, which is also invertible on kerQσ 3 w by (8), and smooth (in particular Lipschitz) nonlinearity N , using the map

(14) w 7→ e−J
−1Lσtw0 +

∫ t

0

e−J
−1Lσs − J−1Nσ(w(s)) +O(ε1) ds.

This map is a contraction up to a time T s.th. CTε1 < 1, where C depends on −J−1Lσ and −J−1Nσ. �
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Lemma 2.4. Suppose there are ε1, ε2 ≥ 0, δ > 0, with δ � ε1, ε2, s.th. for every (σ, v, ξ, w) ∈ Σ×M × ranQσ×kerQσ,
we have 

‖E′(v)‖H ≤ ε1 (approximate critical point),

‖Lσξ‖H ≤ ε2‖ξ‖H (approximate zero-mode),

|〈Lσw,w〉|, ‖Lw‖2H ≥ δ‖w‖2H (coercivity),

Then for a path w(t) ∈ kerQσ(t) as in (5), there is T1 = O(δ/ε22) s.th.

(15) ‖w(t)‖H ≤ C(e−
δ
2β tβ‖w(0)‖H + δε1) (t ≤ T1)

for some β,C > 0 independent of t.

Proof. We consider two separate cases for gradient and Hamiltonian evolution. 1. Gradient flow. In this case J = 1.
We derive a differential inequality for the quantity 1

2 〈Lσw,w〉, which contributes most to the energy. Then the desired
estimate follows from the coercivity of Lσ.

For paths v(t), w(t) as in (5), compute

(16)

d

dt

1

2
〈Lσw,w〉 = 〈∂tw,Lσw〉+

1

2
〈[∂t, Lσ]w,w〉

(11)

≤ −〈E′(v) + Lσw +Nσ(w), Lσw〉 − 〈∂tv, Lσw〉+ C1‖∂tσ‖Y ‖w‖2H
≤ −〈E′(v) + Lσw +Nσ(w), Lσw〉+ γ‖∂tσ‖Y ‖w‖H + C1‖∂tσ‖Y ‖w‖2H ,

where γ > 0 is independent of t. For the first inequality, use the commutator estimate ‖[∂t, Lσ]‖H→H ≤ C1‖∂tσ‖Y .
For the last inequality in (16), use the self-adjointness, the approximate zero-mode property of v, and boundness of

Lσ on kerQσ, to get

〈∂tv, Lσw〉 = 〈Lσ∂tv, w〉 ≤ ε2‖gσ‖Y→X‖∂tσ‖Y ‖w‖H .
By this, one can choose γ = Cε2 where C is a uniform upper bound of ‖gσ‖Y→X .

Next, we show ‖Lσw‖2H ≥ δ
2‖w‖

2
H . This is a generic argument, so we drop σ dependence here. The point is that L

is coercive and therefore positive, so L1/2 is well-defined. Write L1/2w = w1 + w2 with w1 ∈ ranQ and w2 ∈ kerQ.
Compute

〈Lw,Lw〉 = 〈LL1/2w,L1/2w〉 = 〈L(w1 + w2), (w1 + w2)〉 ≥ (δ +O(ε2))‖w‖H ,
where we use (8) to bound 〈Lw2, w2〉 from below, and the smallness property (7) of L|ranQ to bound the rest terms.
For ε2 � δ this gives the desired result.

Using (6), the coercivity of Lσ, the remainder estimate ‖Nσ(w)‖H ≤ C2‖w‖2H , and (16), we have

(17) (
d

dt
+

δ

2β
)
1

2
〈Lσw,w〉 ≤ βε1‖w‖H + ‖w‖H(‖∂tσ‖Y (γ + C1‖w‖H) + C2β‖w‖2 −

δ

4
),

where β <∞ is a uniform upperbound of the operator norm of Lσ.
Let T1 be the maximal time s.th.

(18) ‖∂tσ‖Y (γ + C1‖w‖H) + C2β‖w‖2 ≤
δ

4

holds. We show T1 = O(δ/ε22). First, we bound ‖∂tv‖Y . Differentiating the square norm of the velocity using (10), we
have

d

dt

1

2
‖∂tσ‖2Y ≤ C

d

dt

1

2
‖E′(v)‖2H

= C〈Lσ∂tv,E′(v)〉
≤ Cε1ε2‖∂tv‖Y .

Integrating this, we get

M(t) ≤ Cε1ε2t+ C ′ε1 (M(t) := sup
t′≤t
‖∂tσ(t′)‖Y ).

This shows that (18) is valid on a time interval t ≤ T1 with T1 = O(δ/ε22), if ε2 > 0. By (15), if ε2 = 0 then (18) is

valid for all time, since the raminder ‖w‖H = Cε1 +O(e−
δ
2β t).

Next, we show ‖w(t)‖H has a exponentially decaying envelope, and therefore (18) holds up to T1. Shrinking the set
of admissible initial configurations X0 to a smaller tubular neighbourhood of M , one can make ‖w(0)‖H ≤ C‖w0‖ � δ.
Then by continuity of the flow, ‖w(t)‖H � δ up to some T2 > 0. For t ≤ min(T1, T2), condition (18) holds, so (17)
implies

(19)
d

dt
(e

δ
2β t

1

2
〈Lσw,w〉) ≤ e

δ
2β tβε1‖w‖H .
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Integrating (19) in time, we have

(20)
1

2
〈Lσw,w〉 ≤ e−

δ
2β t〈Lσ(0)w(0), w(0)〉+

δε1
2
M(t),

where we set M(t) := supt′≤t ‖w(t′)‖H . Using the coercivity condition in (20), we get

M(t)2 ≤ 2

δ
(e−

δ
2β tβ‖w(0)‖2H + βε1M(t)) =⇒ M(t) ≤ 2

δ
(e−

δ
2β tβ‖w(0)‖H + βε1).

This implies ‖w(T2)‖ � δ, and therefore (18) still holds at T2. Thus we can iteratre this process all the way up to
t = T1.

2. Hamiltonian system. In this case J is a symplectic operator, and we would like to derive a approximate
conservation law. Consider the expansion

E(v + w) = E(v) + 〈E′(v), w〉+
1

2
〈Lσw,w〉+O(‖w‖3H).

Using (6) and (8), we find

‖w‖2 ≤ E(v + w)− E(v) + ε1‖w‖+ C‖w‖3H .
�

In the physics literature, the procedure described above is known as the adiabatic approximation. The constraint (18)
is the adiabatic condition: it restricts the validity of approximation to configurations with slowly moving parameters.

The conditions (6) strengthens the estimate (15) as ε1 → 0, viz. as v ∈M tends to exact critical point of E. Indeed,
if M are critical points of E, then differentiating the stationary equation E′(f(σ)) = 0 w.r.t. σ we see that Lσdf(σ) = 0,
and consequently Tf(σ)M = df(σ)(TσΣ) lies in the kernel of Lσ. Thus (7) are satisfied with ε2 = 0. In turn, as δ →∞,
the exponential decay rate increases through (15).

We now show that conditions (6)-(8) are robust, in the sense that if they hold at one point, then they hold in a
neighbourhood around that point. This shows that if one has at least one candidate for the approximate soliton, then
automatically one has a manifold of such.

Proposition 2.5. Suppose v0 = f(σ0) for some σ0 ∈ Σ, where f : Σ→ X is a smooth immersion of some manifold Σ.
Suppose 0 is an isolated eigenvalue of the linearized operator L0 = E′′(v0). Suppose (6)-(8) hold at v0. Then (6)-(8)
hold for for every (σ, v, ξ, w) ∈ Σ0 ×M0 × ranQσ × kerQσ where Σ0,M0 are resp. neighbourhoods around σ0, v0.

Proof. These estimates follow by contuinuity argument. First, since E′ and f vary smoothly, for ‖σ − σ0‖ � ε1, we
have ‖E′(f(σ))− E′(f(σ0))‖H ≤ ε1/2, which gives (6).

The tangent space to M varies smoothly near σ0, in the sense that

(21) ‖Q̄σ − Q̄0‖H→H = ‖Qσ −Q0‖H→H ≤ C‖σ‖Y .
This equation holds because Qσ is C1 and therefore Lipshitz in σ, as f is C2. (See the definition of Qσ in Lemma 2.1.)
Similarly, Lσ also varies smoothly with ‖Lσ − L0‖H→H ≤ C‖σ‖Y . So for ‖σ − σ0‖ � ε2 we have (7) for every tangent
vector in Tf(σ)M .

Lastly, the coercivity condition (8) follows because

(22) Q̄σLσQ̄σ = Q̄0L0Q̄0 +O(‖σ‖Y ) =⇒ 〈Lσw,w〉 ≥ (δ −O(‖σ‖Y ))‖w‖2 (w ∈ (kerQσ)⊥).

�

Next, we shall exploit the fact that M needs not to consist of only critical points of E. This leaves considerable
freedom in constructing configurations that resembles a multi-soliton. As long as these manufactured configurations
satisfy (6)-(8), we can derive an effective motion law (10) for these non-stationary solutions to (2), which then captures
the interaction of multiple single solitons.

For instance, consider the following construction in [Per04]. Denote ψλ,z the NLS gound state, which is the unique
smoooth, radial, positive solution to the nonlinear eigenvalue problem −∆u+ λu+ g(u2)u = 0. (Here g is suitable
nonlinearity.) This ground state decays exponentially fast away from z ∈ Rd. Then simply adding several gound
states together produces a multi-soliton f(z, λ) :=

∑n
i=1 ψλj ,zj . When the point solitons are weakly interacting, i.e. if

mini 6=j |zi− zj | � 1, then heuristically f(z, λ) is itself close to a gound state of E =
∫

1
2 |∇u|

2 +G(|u|2) (where G′ = g).

Now taking into account the symmetry of E (rotations with dimension d(d− 1)/2 and modulation u 7→ eiθu with one

dimension), we get an immersion F : Σ ⊂ Rd2(d+1)/2+2d → H1(Rd,C). With a suitable submanifold Σ we can make
M := F (Σ) compatible with the energy E, in the sense that (6)-(8) hold. Then one can produce an effective motion
law for the interacting solitons f(z, λ) under (1), in this case a nonlinear heat equation, in terms of z, as in (10). The
effective motion is valid up to a exponentially decaying error, as in (15). This makes rigorous an essential feature of
solitons, namely this asymptotic linear aspect that resembles the principle of superposition for linear equations.
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Finally, let us mention the limitation of our approximation scheme. Suppose now the physical system consists of n
identical particles. Then two points in Rnd related by a permutation in Sn should parametrize the same configuration.
This way Σ becomes a submanifold of Rn/Sn. So far we have not discuss the possibility of Σ being a manifold with
boundary of less dimension. This problem comes to the front when one consider the scattering of n identical particle.
With the trivial coordinate inherit from Rnd, the manifold Σ is singular along the diagonal D := {(z, . . . , z)} ⊂ Rnd.
However, scattering happens precisely when the trajectory crosses D. One can use the coordinate given by the n
elementary symmetric polynomials c1, . . . , cn on Σ so as to make the latter a smooth manifold. But then though
the map (c1, . . . , cn) 7→ f(z(ci)) can be well-defined, it is not C1 in general, because the derivatives ∂zi/∂cj blows up
at the diagonal D. Moreover, as z approaches D, with the kind of constrution we described above (i.e. with naive
superposition), it is not likely that the approximate soliton remains to have low energy as z → D, since the separation
mini 6=j |zi − zj | → 0.
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