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Euclid’s five Postulates

Euclid’s Elements (c. 300 BC) is based on his five postulates:

P1. To draw a straight line from any point to any point.

P2. To produce a finite straight line continuously in a straight line.

P3. To describe a circle with any center and radius.

P4. That all right angles equal one another.

P5. That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles, the two

straight lines, if produced indefinitely, meet on that side on which

are the angles less than the two right angles.



One can sort these postulates using contemporary theory:

1. As topological space: P1 (linear space), P2 (continuity).

2. As metric space: P3 (∃ a binary function associate pair of

points to a definite distance).

3. As Riemannian manifold: P4 (homogeneity), P5 (⇐⇒ zero

curvature).

But of course this classification is not available to early geometers.



If ~BA and ~ED are extended, then they intersect.



Before Riemann’s solution

Recorded efforts to cut P5 off can be found even among the early

scholors
This [PP] ought to be struck from the postulates alto-

gether. For it is a theorem. . . and requires for its demon-

stration a number of definitions as well as theorems. And

the converse of it is proved by Euclid himbself as a theo-

rem. (Proclus, 412-485)

The mentioned theorem, Prop. I.17 in the Elements (sum of any

two angles in a triangle < π) is actually independent of PP (⇐⇒

angle sum of a triangle = π).



Attempts of proof remain unfruitful: they are either incorrect or

based on additional hypotheses. Major breakthroughs are made by

Sacherri, Lambert and Legendre (c. 1730), which leads to the

works of Gauss, Bolyai, Lobachevsky (c. 1830).

An important development in this century is: the former group of

mathematicans all started with the conviction that geometry

without PP is absurd. E.g. The title of Sacherri’s Euclid Freed of

Every Flaw). The latter generation however found a meaningful

theory of geometry without PP plausible.



Title page of Fr. Saccheri’s treatise



Gauss

Entering 19th century, mathematicians become less inclined to

committ to prove PP. Gauss, in particular, eventually believed this

would be impossible:

I come more and more to the conviction that the neces-

sity of our geometry cannot be proved at least not by the

human intellect nor for the human intellect. (Gauss to Ol-

bers, April 28th, 1817)



From his private letters to his colleagues, Gauss seems to have

already conceived of a seperate notion from a given abstract space,

which determines certain geometric properties that are hitherto

attributed to the space itself, or completely a priori. The property

of parallel, as stated in PP, is among such properties indeterminate

basing on the space alone.



I have consolidated many things further

and my conviction that we cannot

justify geometry completely a priori has

if possible grown even stronger. (Gauss

to Bessel, Jan 27th, 1829)

The cited letter, from the Archive of

Academy of Sciences and

Humanities, Göttingen



A contemporary of Gauss, Russian

mathematician Lobachevsky came to

the conclusion that PP itself cannot be

derived as a theorem, but rather an

empirical property that one chooes to

attach to the description of space.

N.I. Lobachevsky (1792-1856)



It is well known that in geometry the theory of parallels has

so far remained incomplete. The futile efforts from Euclid’s

time on throughout two thousand years have compelled me

to suspect that the concepts themselves do no contain the

truth which we have wished to prove, but that it can only

be verified like all other physical laws by experiment, such

as astronomical observation. (Lobachevsky, 1829)



On the Hypotheses

Riemann, a doctoral student of Gauss,

contemplated the possibility and

consequences of there being no proof of

PP. His idea along this line is best

summarized in his habilitation lecture in

front of the Faculty at Göttingen in

1854, On the Hypotheses Which Lie at

the Bases of Geometry.

G.F.B. Riemann (1826-66)



In this posthumously published essay, which later become widely

influential, Riemann outlined his vision of a separated notion of

metric from that of the underlying space, the foundation of what is

now known as his Geometry.

The central idea: the pair (M, g) where M = the “multiply

extended magnitude” (i.e. underlying n-dimensional manifold), and

g = the “measure relation” (i.e. a metric tensor on M) together,

instead of M itself, determine the geometric properties of a space.



. . .A multiply extended magnitude is capable of different

measure relations. . . The propositions of geometry cannot

be derived from general notions of magnitude, but that the

properties which distinguish space from other conceivable

triply extended magnitudes are only to be deduced from

experience. (Plan of the Investigation)



Preliminaries

For Riemann, the notion of manifold includes both the one we are

familiar today, as well as that of discrete set.

According as there exists among these specialisations [ele-

ments in a set] a continuous path from one to another or

not, they form a continuous or discrete manifoldness: the

individual specialisations are called in the first case points,

in the second case elements, of the manifoldness. (Sec.I.1)



Riemann regards the “discrete manifold” as the prevelant case in

real life, and a theory of such can be build upon “the postulate that

certain given things are to be regarded as equivalent”. (Of course,

modern set theorists may not agree on this point.) The only real

life example of continuous manifold that Riemann can think of are

“the positions of perceived objects and colours”. Other than that,

“More frequent occasions for the creation and development of

these notions occur first in the higher mathematic.” (Sec I.1)



Construction of manifolds

After setting up these notions, Riemann goes on to give a

constrution of “multiply extended manifoldness”, viz. an

n-dimensional manifold, my means of iterated parametrization.



If in the case of a notion whose specialisations [viz. points,

elements] form a continuous manifoldness, one passes from

a certain specialisation in a definite way to another, the

specialisations passed over form a simply extended mani-

foldness, . . . . If one now supposes that this manifoldness

in its turn passes over into another entirely different, and

again in a definite way, namely so that each point passes

over into a definite point of the other, then all the special-

isations so obtained form a doubly extended manifoldness

. . . and it is easy to see how this construction may be con-

tinued (Sec.I.2).



Reduction of manifolds

Next, Riemann descibed how to obtain an n-dimensional manifold

from an (n + 1)-dimensional one via level set (assuming

SingM = ∅, so that all level sets are exactly one dimension less.),

“the reduction of determinations of place in a given manifoldness

to determinations of quantity”. From this procedure Riemann

would “make clear the true character of an n-fold extent”



. . . [L]et us take a continuous function of position within

the given manifoldness, which, moreover, is not constant

throughout any part of that manifoldness. Every system

of points where the function has a constant value, forms

then a continuous manifoldness of fewer dimensions than

the given one. These manifoldnesses pass over continu-

ously into one another as the function changes. . .the cases

of exception (the study of which is important) may here

be left unconsidered. Hereby the determination of position

in the given manifoldness is reduced to a determination of

quantity and to a determination of position in a manifold-

ness of less dimensions. (Sec. I.3)



Determination of metric tensor

Next, to determine the desired properties of the “measure

relation”, viz. the metric tensor g , Riemann points out the

necessity of introducing purely analytic means in addition to mere

geometric considerations.

. . .[T]he measure relations of which such a manifoldness

is capable, and of the conditions which suffice to deter-

mine them . . . can only be studied in abstract notions of

quantity, and their dependence on one another can only

be represented by formulæ. (Sec. II)



Consider two points point p, q ∈ Rd and a C 1 parametrization

x : [0, 1]→ M s.th. x(0) = p, x(1) = q. Riemann’s postulates for

admissible “measure relations”, viz. a (infinitesimal) metrics,

denoted ds, are as follow (Sec. II.1):



1. “[T]he length of lines is independent of their position, and

consequently every line is measurable by means of every

other.’ ’⇐⇒ the choice of ds itself does not depend on p, q.

2. “[A]n expression which will thus contain the quantities x and

the quantities dx . ” ⇐⇒ ds is a function of x , ẋ .

3. “[I]f all the quantities dx are increased in the same ratio, the

linear element will vary also in the same ratio.” ⇐⇒ ds is

homogeneous in ẋ



Let M = Rd . Fix p ∈ M. Denote ds = ds|p the metric element at

p to be determined. Riemann considers a C 2 function f : M → R

s.th. f (p) = 0, and f (q) increases as d(p, q) increases. Since p is

a minimum, Riemann further assumes the Hessian of f at p is

strictly positive. He then reasons:



This differential expression, then, of the second order [i.e.

the 2-form ∂ ij fdx
idx j ] remains constant when ds remains

constant, and increases in the duplicate ratio when the

dx, and therefore also ds, increase in the same ratio [as

postulated above]; it must therefore be ds2 multiplied by

a constant, and consequently ds is the square root of an

always positive integral homogeneous function of the sec-

ond order of the quantities dx, in which the coefficients

are continuous functions of the quantities x. For Space,

when the position of points is expressed by rectilinear co-

ordinates, ds =
√∑

(dx)2. (Sec.II.1)



Riemann concludes that in general,

ds2|x = ∂i ∂j f (x , dx)dx idx j

for some f ∈ C 2(Rd). In modern terms, the metric tensor is given

by ds2 = gijdx
idx j , and the familiar postulates on g follow from

the properties of f above:

1. gij = gji : since f ∈ C 2, this follows from Clairaut’s rule

2. gijv
iv j > 0 for non-zero v : since the Hessian of f is positive

definite.



Other possibilities are acknowledged, but later dismissed on the

ground of less geometric interpretation.

I restrict myself, therefore, to those manifoldnesses in

which the line-element is expressed as the square root of

a quadric differential expression. (Sec. II.1)

Implicitly, Riemann favours quadratic expression because

Pythagorean identity is satisfied at the infinitesimal scale (i.e. ds2

is quadratic in dx i ) .



The necessity of g

The necessity to specify a metric tensor is then given by a

consideration on the degree of freedom.

1
2n(n+ 1) = the number of free coefficients in a symmetric 2-tensor

gij , as in a quadratic expression for line segment ds2 = gijdx
idx j .

n = the number of coordinates, considered as substitutions

yi = yi (x1, . . . , xn), i = 1, . . . , n of a given coordinate x .

Clearly 1
2n(n + 1) > n, so there are free coefficients independent of

coordinization. These must therefore be intrinsic in geometric

description.



Based on the number of free coefficients in the metric, Riemann

distinguish flat and curved manifolds:

Manifoldnesses in which, as in the Plane and in Space,

the line-element may be reduced to the form
√∑

(dx)2,

are therefore only a particular case of the manifoldnesses

to be here investigated. . . [T]hese manifoldnesses in which

the square of the line-element may be expressed as the

sum of the squares of complete differentials I will call flat.

(Sec. II.1)



For a general curved manifold, the remaining 1
2n(n − 1) degree of

freedom are found by specifying the sectional curvatures at each

point, the number of which equals to that of the linearly

independent two-dimensional subspaces of the n-dimensional

tangent space at that point: this number = C (n, 2) = 1
2n(n − 1).

E.g. For surface in 3-space, 1
2n(n− 1) = 1, and sectional curvature

≡ Gauss curvature.



Modern interpretation: the symmetries of Riemann curvature

Rijkl(p) make it completely determined once the sectional

curvatures K (Π) are known for all linearly independent Π ⊂ TpM.

Then one can recover gij from the definition of sectional curvature

K (Π) = K (v ,w) =
Rijklv

iv jwkw l

(gikgjl − gijgkl)v iv jwkw l

(Π = span(v ,w) ⊂ TpM).



Analytic v. geometric quantities

For Riemann, the sectional curvatures K are purely geometric

quantities, in contrast to the purely analytic quantities gij

appeared in the “measure relations”. Once the (sectional)

curvatures are brought to the front, Riemann start a discussion of

constant (sectional) curvature surfaces (not CMC!).



Surfaces of constant (sectional) curvatures

On a constant curvature surface, since the metric tensor is

determined by the curvatures, the former also remains constant.

The metric element is then given by

ds =
√
gijdx idx j =

1

1 + α
4

√
(x i )2

√∑
(dx i )2 (α = curvature).

This is actually the only real formula in the whole lecture.



Riemann listed some special properties on surface of constant

curvature (Sec. II.5):

1 “If we regard these surfaces as locus in quo [v. “site in

which”, or ambience] for surface regions moving in them, as

Space is locus in quo for bodies, the surface regions can be

moved in all these surfaces without stretching”: ∀p, q ∈ M

with constant curvatures, ∃ neighbourhoods U 3 p,V 3 q in

M and an isometry φ : U → V s.th. φ(U) = V . This φ is the

“movement”

2 “The surfaces with positive curvature can always be so formed

that surface regions may also be moved arbitrarily about upon

them without bending”: this follows the fact that surfaces of

constant positive curvature can be realized as spheres.



3 “[B]ut not those with negative curvature.”

4 “[I]n surfaces of zero curvature [there is] also an independence

of direction from position, which in the former surfaces does

not exist.”: The tangent spaces TpM, TqM are related by

parallel transport. The latter in the flat case is independent of

the choice of connecting curve joing p, q, unlike for general g .



From empirical observation, free and rigid mobility of bodies

appears to be a natural condition on the geometric model of space.

Riemann’s contemporary Helmholtz postulates this point in his

Über die tatsc̈hlichen Grundlagen der Geometrie (“About the

factual basis of Geometry)” as an axiom. From here Helmholtz

derives the constancy of curvature is necessary for the description

of space, which in fact is a rather strong restriction.



Application to 3-space

So far, Riemann has developed an abstract theory involving a pair

(M, g) of an underlying manifold and an admissible metric. The

next problem is to take M = R3 and consider the various

possibilities of g , as well as how to choose which particular g for

the description of the physical world.



This theme occurs earlier to Lobachevsky, who wrote:

[S]pace, in itself, for itself alone, does not exist for us.

Accordingly, there can be nothing contradictory for our

understanding if we allow that some forces in nature follow

one, others another special geometry. (Lobachevsky, 1829)

Riemann, as his cited predecessor above, retains that the geometry

(⇐⇒ the metric tensor g) is determined by empirical observations.



For instance, one can determine the metric g as follows:

1. “[T]he metric properties of space are determined if the sum of

the angles of a triangle is always equal to two right angles.”:

by Gauss-Bonnett, this implies K ≡ 0 and this in turn implies

g is everywhere flat.

2. “[I]f we assume with Euclid not merely an existence of lines

independent of position, but of bodies also, it follows that the

curvature is everywhere constant”. : Locally isometric ⇐⇒

constant curvature, in which g is given by the previous

formula.



In the study of description of space, Riemann stresses the

distinction between what in modern terms amount to topological

and metric properties (Sec.III.2)

[W]e must distinguish between unboundedness and infinite

extent, the former belongs to the extent relations, the lat-

ter to the measure relations. . . . The unboundedness of

space possesses . . . a greater empirical certainty than any

external experience. But its infinite extent by no means

follows from this; on the other hand if we assume inde-

pendence of bodies from position, and therefore ascribe

to space constant curvature, it must necessarily be finite

provided this curvature has ever so small a positive value.



“Unbonudedness” means ∂M = ∅, a topological property.

“infinite extent” means diamM = supp,q∈M d(p, q) =∞, a metric

space property.

E.g. in the above paragraph, R3 is unbounded yet (R3, δij) has

infinite extent. Every surface of constant positive curvature has

finite extent (since they can be realized as spheres).



Riemann considers the task of determining the metric as a doomed

effort if one were to seek absolute accuracy, since “the possible

cases form a continuous manifoldness, every determination from

experience remains always inaccurate” (Sec.III.2).

Meanwhile, Riemann restricts his attention at the differential level,

while dismissing the “questions about the infinitely great“ as

“useless”.



But this [the futility of studying at large scale] is not the

case with the questions about the infinitely small. It is

upon the exactness with which we follow phenomena into

the infinitely small that our knowledge of their causal re-

lations essentially depends (Sec.III.3).

This naturally leads Riemann to use techniques of differential

geometry, recently developed by his doctoral advisor Gauss.



Riemann maintains a position similar to Lobachevsky, in that

empirical observation determines what amounts to a fair choice of

g . Yet Riemann would not to go so far as did Helmholtz in

stipulating rigid movement as a part of axiom in his theory.

Indeed, Riemann has in mind of a much wider range of possibility

for the metric tensor g . The only restrictions come from analytic

consideration.



Now it seems that the empirical notions on which the met-

rical determinations of space are founded, the notion of a

solid body and of a ray of light, cease to be valid for the in-

finitely small. We are therefore quite at liberty to suppose

that the metric relations of space in the infinitely small do

not conform to the hypotheses of geometry; and we ought

in fact to suppose it, if we can thereby obtain a simpler

explanation of phenomena (Ibid).



Conclusion

Riemann’s greatest contribution to geometry is his clear

articulation of a novel structure of space, wherein the “measure

relation” is separated from the “n-ply extended manifoldness”.

For Riemann, the central object of differential geometry is the

metric tensor g , instead of the underlying space M. The fomer

contains essentially all the information regarding the geometric

properties.



To apply his theory of geometry to physics, one must determine g

suitably from empirical observation, even if the result thus derived

is against intuition. The point of building a mathematical frame

work for what we now call Riemannian geometry, is to remove the

restriction imposed by convention and intuition that reduces one’s

view to the Euclidean case. This then will allow physicist to obtain

better vision of the understanding of empirical facts.



Epilogue

The answer to these questions [i.e. determining the ge-

ometric description of space] can only be got by start-

ing from the conception of phenomena which has hitherto

been justified by experience, and which Newton assumed

as a foundation, and by making in this conception the suc-

cessive changes required by facts which it cannot explain.

Researches starting from general notions, like the investi-

gation we have just made, can only be useful in preventing

this work from being hampered by too narrow views, and

progress in knowledge of the interdependence of things

from being checked by traditional prejudices. (Sec.III.3)
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