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1 Introduction

Let (M, g) be a 3-dimensional, complete, oriented Riemannian manifold with non-negative curvature.
Consider the area-constrained Willmore (ACW) flow,

∂tx
N = −W (x)− λH(x). (1)

Here, for t ≥ 0, x = xt : S → M is a family of embeddings of spheres (with orientation compatible
with that on M). ∂tx

N denotes the normal velocity at x, given by ∂tx
N := g(∂tx, ν), where ν = ν(x)

is the unit normal vector to Σ at x. H(x) denotes the mean curvature scalar at x. W (x) := ∆H(x) +
H(x)(RicM (ν, ν)+ |Å|2(x)) is the Willmore operator, where Å(x) denotes the traceless part of the second
fundamental form. λ is the Lagrange multiplier, arising due to the area constraint.

1.1 Configuration spaces and the geometric structure of ACW

In this subsection, we layout the geometric structure of ACW flow (1).
Let c ≫ 1, k ≥ 4 be given. Define the configuration space

Xk := Hk(S,M), Xk
c :=

{
x ∈ Xk : |x(S)| = c

}
. (2)

Here, for a surface Σ := x(S) ⊂ M , we denote |Σ| :=
∫
Σ
dµg

Σ the area of Σ, where µg
Σ is the area form

induced by the embedding x and background metric g. One can check easily that (1) is well-defined in
Xk

c . The spaces in (2) are equipped with the L2-inner product

⟨ϕ, ϕ′⟩ :=
∫
S
⟨ϕ, ϕ′⟩Euclidean (ϕ, ϕ′ ∈ Xk). (3)

Let x ∈ Xk and write Σ = x(S). The tangent spaces to x at Xk and Xk
c are respectively given by

TxX
k = Xk, (4)

TxX
k
c =

{
ϕ ∈ TxX

k :

∫
Σ

Hg(ϕ, ν) = 0

}
. (5)

Here, (5) is due to the well-known first variation formula of the area functional. Notice that, slightly
abusing notation, in (5) we view ϕ as a vector field over Σ. With (3), we have a formal Riemannian
structure on the configuration spaces Xk and Xk

c .
With this geometric structure of Xk, one can view the equation (1) as the L2-gradient flow, restricted

to Xk
c , of the Willmore energy

W(Σ) =
1

4

∫
Σ

H2 dµg
Σ. (6)

We call (the images of) static solutions to (1) surfaces of Willmore type, following the nomenclature in
[4]. Using Sobolev inequalities, one can show that for k ≥ 4, the functional W is well-defined and C2 (in
the sense of Fréchet derivatives) on Xk

c .
Let dW(x) : TxX

k
c → TxX

k−4
c be the Fréchet derivative of W at an embedding x in the class Xk

c .
Define the normal L2-gradient ∇NW(x)ϕ := dW(x)ϕ for every normal, area-preserving variation ϕ on
the surface Σ = x(S). (This operator ∇N depends on x.) Then by the first variation formula of the
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Willmore energy (see e.g. [1, Sec. 3]), this ∇NW(x) is given by the r.h.s. of (1). This allows us to
rewrite (1) as

∂tx
N = ∇NW(x) (x ∈ Xk

c ).

Equivalently, (1) is the (negative) gradient flow of the Hawking mass,

mHaw(Σ) :=
|Σ|1/2

(16π)3/2

(
16π − 1

2

∫
Σ

H2 dµg
Σ

)
, (7)

in the sense that a flow of surfaces evolving according to (1) increases the mass mHaw. For interests from
physics related to this problem, especially in general relativity, see [5].

1.2 Main result

Under suitable assumptions on the background manifold, we derive the following results in [6]:

Theorem 1 (Main). Let k ≥ 4, c ≫ 1. Let Xk be the configuration space defined in (2). Fix R ≫
1, δ ≪ 1 in Definition 1.

Then there exists a map

Φ̃ : M ′ := R>R ×B1(0) ⊂ R× R3 → Xk

with the following property: Let xr,z := Φ̃(r, z). There hold:

1. (Critical point) xz parametrizes a surface of Willmore type if and only if z is a critical point of the

function W ◦ Φ̃ : R4 → R, restricted to the submanifold
{
(r, z) ∈ M ′ :

∣∣∣Φ̃(r, z)(S)∣∣∣ = c
}
.

2. (Stability) Suppose xz parametrize an admissible surface of Willmore type. Then xz is uniformly
stable with small area-preserving Hk-perturbation 1 if z is a strict local minimum of the function

W ◦ Φ̃ restricted to the submanifold
{
(r, z) ∈ M ′ :

∣∣∣Φ̃(r, z)(S)∣∣∣ = c
}
.

3. (Effective dynamics) Let Σ∗ = x∗(S) be an admissible surface. Let Σt = xt(S) be the global solution
to (1) with initial configuration Σ|t=0 = Σ∗ as in Theorem 2.

Then there exist α > 0, T = O(R−α), and a path (rt, zt) ∈ M ′, such that for every t ≥ T ,

∥Φ̃(rt, zt)− xt∥Xk = O(R−3). (8)

Moreover, the path (rt, zt) evolves according to

ż =
1

4π
∇zW ◦ Φ̃(r, z) +O(R−3), (9)

ṙ = 4R−2 +O(R−3). (10)

In (9) the leading term is of the order O(R−2).

4. Conversely, if (rt, zt) ∈ M ′ is a flow evolving according to (9)-(10), then there exists a global
solution xt to (1) such that (8) holds for this choice of (rt, zt) and every T ≤ t ≤ T +R.

2 Setup of the problem

Below we give the geometric assumptions and preliminary results in Theorem 1.

1This means that if y is another admissible surface that is Hk-close to xz , then for every ϵ > 0 there exists T > 0 such
that ∥xt − yt∥Xk < ϵ for all t ≥ T , where xt, yt are respectively the flows generated by xz , y under (1).
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2.1 Asymptotically Schwarzschild manifold

A 3-dimensional complete Riemannian manifold (M, g) is said to be Ck-close to Schwarzschild if the
following holds:

1. M \K is diffeomorphic to R3 \B1(0) for some compact subset K ⊂ M .

2. The metric g splits as gS + h, where

gS :=

(
1 +

m

2 |x|

)4

δij

is the Schwarzschild metric with ADM mass m > 0, and h ∈ Ck is a small perturbation satisfying

hij = hji, ∂αhij ≤ η |x|−(2+|α|)
(|α| ≤ k, |x| ≫ 1), (11)

for some fixed small decay coefficient η ≪ 1. Here x ∈ R3 denotes the coordinate in the asymptotic
chart on M .

Physically, for applications to general relativity, such manifoldM is a perturbation of the static Schwarzschild
black hole (R3 \Bm/2(0), gS).

To simplify notations, throughout the paper we normalize ADM mass to be m = 2. We assume that
the ambiance space M is Ck-close to Schwarzschild for sufficiently large k, and that in (11) the decay
coefficient η ≪ 1. Thus in what follows we take

(M, g) = (R3 \B1(0), gS + h)

where h is as in (11).
To use results in [2–4], we assume the scalar curvature Sc onM satisfies the following decay properties:

xj∂xj

(
|x|2 Sc

)
= o(|x|2), (12)

Sc(x)− Sc(−x) = o(|x|4). (13)

The asymptotically-flatness condition (12) is satisfied if g is Ck-close to Schwarzschild with k ≥ 4, and

Sc = o(|x|4), in which case ∇ Sc = o(|x|−5
). (13) means the scalar curvature on M is asymptotically

even. Geometrically, condition (12) provides quantitative control for various estimates involving extrinsic
geometric quantities.

2.2 Preliminary results

Let R ≫ 1 be given. Let K ⊂ M be a large compact set. As explained in the last subsection, for
asymptotically Schwarzschild manifoldM , we can identify theM\K with its coordinate space R3\BR(0).

Let δ > 0 be given.

Definition 1 (Admissible surfaces). For a closed surface Σ ⊂ M , define the inner and outer radii
ρ(Σ), λ(Σ) as

ρ(Σ) = min
x∈Σ

|x| , (14)

λ(Σ) :=
√

|Σ| /4π. (15)

We say Σ is admissible if the interior of Σ contains K, and

ρ(Σ) > R,

∣∣∣∣ρ(Σ)λ(Σ)
− 1

∣∣∣∣+ ∫
Σ

|Å|2 < δ. (16)

Here Å denotes the traceless part of the second fundamental form on Σ.

Remark 1. Geometrically, a surface Σ is admissible if the origin lies sufficiently deep inside the interior
of Σ (this property is called centering in [2]), and at the same time the surface does not wiggle too
much. Obviously we have λ(Σ) ≤ maxx∈Σ |x|. Using the terminology in [2], every admissible surface Σ
satisfying (16) with R, δ−1 ≫ 1 is on-center
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For the class of admissible surfaces, we have the following well-posedness result for (1):

Theorem 2 ([3, Thm. 5.3]). Assume M is C4-close to Schwarzschild and satisfies (12)-(13). Then for
R ≫ 1, δ ≪ 1 and every admissible surface Σ∗ satisfying (16), there exists a global solution to (1) with
initial configuration Σ|t=0 = Σ∗.

Stationary solution to (1) are called surfaces of Willmore type. The existence and stability of such
surfaces are studied in [2, 3].

Theorem 3 ([4, Thm. 1], [3, Thm. 5.3]). Assume M is C4-close to Schwarzschild and satisfies (12)-
(13). Then there exists a compact subset K ⊂ M , such that M \K is foliated by surfaces of Willmore
type.

Moreover, for R ≫ 1, δ ≪ 1 and every admissible surface Σ∗ satisfying (16), the flow generated by
Σ∗ under (1) converges smoothly to one of the leave of this foliation.
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