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1 Introduction

Consider the mean curvature flow (MCF) for a family of hypersurfaces given by immersions X(·, t) : Rn−k ×Rk+1 → Rn+1,
satisfying

∂tX = −H(X)ν(X). (1)

In this paper, we are interested in the dynamical behaviour of a solution X to (1), which first develops a singularity at
0 ∈ Rn+1, t = T > 0.

Equation (1) is invariant under rotation, translation, and parabolic rescaling. Motivated by these symmetries, we consider
the following time-dependent rescaling for a solution to (1) as follows:

X(x, ω, t) = λ(t)g(t)Y (y(x, t), ω, τ) + (0, z(t)), (2)

where the immersion Y is defined through this relation, and

g(t) ∈ SO(n+ 1), g(0, x′) = (0, x′) for every x′ ∈ Rk+1, (3)

z(t) ∈ Rk+1, (4)

λ(t) :=

(
2

∫ T

t

a(t′) dt′

)1/2

, a(t) > 0, (5)

y(x, t) := λ(t)−1x, (6)

τ(t) :=

∫ t

0

λ(t′)−2 dt′. (7)

Notice that we do not fix the parameter σ := (g, z, a), but rather regard this as a path to be determined in the manifold

Σ := SO(n+ 1)× Rk+1 × R>0. (8)

The condition (5) shows that λ(t) is uniquely determined by the path a(t) > 0. Indeed, this λ(t) is the unique solution
to the Cauchy problem

λ̇(t)λ(t) = −a(t), λ(T ) = 0.

Here and in the remaining of this section, the dot denotes differentiation w.r.t. the fast time t-variable. By definition, the
terminal condition on λ ensures the rescaling (2) gives rise to a tangent flow Y = Y (y, ω, τ) in the microscopic variable y
and slow time variable τ .

Direct computation shows X of the form (2) solves (1) if and only if the pair (σ, Y ) solves

∂τY = −H(Y )ν(Y )− a ⟨y, ∇y⟩Y + aY − g−1∂τgY − λ−1g−1∂τz. (9)

To get (9), one uses the relations λλ̇ = −a, λ2ẏ = ay, and τ̇ = λ−2, which follow from (5)-(7) respectively. We call (9) the
rescaled mean curvature flow.

The rescaled MCF (9) has the following family of stationary solutions:

Ya0 ≡

(
y,

√
k

a0
ω

)
, (10)

σ0 ≡ (g0, z0, a0) ∈ Σ. (11)

Geometrically, the three components in σ0 consist of a rotation g0 of the cylindrical axis, a transversal translation z0, and a
dilation by a factor of

√
k/a0. The pair (σ, Y ) corresponds to a cylinder with unit radius along the y axis, transformed by

the symmetry σ0 as in (2).
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1.1 Main Results

In the remaining of this paper, we seek maximal solution X to (1) on the spatial domain Rn−k × Sk and the time interval
0 ≤ t < T , of the form

X(x, ω, t) = λ(t)g(t)

(
y(x, t),

(√
k

a(t)
+ ξ(y(x, t), ω, τ(t))

)
ω

)
︸ ︷︷ ︸

as Y in (2)

+(0, z(t)). (12)

In terms of the blow-up variables y, τ from (6)-(7), this amounts to finding a pair (σ, Y ) that solves the rescaled MCF
(9) for all τ ≥ 0. Here σ = σ(τ) is a path of parameters. Y = Y (ξ) is a flow of graphs over a fixed cylinder, parametrized
by a path of functions ξ(·, τ) : Rn−k × Sk → R≥0, τ ≥ 0, as in (12).

With this convention as well as the rescaling (3)-(7) understood, the main result of this paper is the following assertions
about the rescaled MCF (9):

Theorem 1. Let Xs(a), s ≥ 2, a > 0 be the weighted Sobolev space defined in (20). There exists 0 < δ ≪ 1 s.th. the
following holds:

1. (Global existence) For every a0 ≥ 1/2 + 2δ, there exists a subspace S ⊂ Xs(a0) with finite codimensions, together with
a map

Φ : Bδ ∩ S → Xs ≡ Xs(1/2), Bδ,S as in Definition 4,

satisfying

∥Φ(η0)∥s ≲ ∥η0∥2Xs , (13)

∥Φ(η0)− Φ(η1)∥Xs ≲ δ ∥η0 − η1∥Xs , (14)

for every η0, η1 ∈ Bδ ∩ S, as well as the following properties:

For every η0 ∈ Bδ ∩ S, there exists a unique global solution (σ, Y ) to the rescaled MCF (9) with initial configuration

Y |τ=0 = (y, (
√
k/a0 + η0 +Φ(η0)ω)

on Rn−k × Sn−k × R≥0.

Moreover, this solution Y is uniquely determined by the decomposition

Y = (y, (
√
k/a+ ξ(y, ω, τ))ω) (y ∈ Rn−k, ω ∈ Sk), (15)

where a = a(τ) is a component of the path σ(τ) = (g(τ), z(τ), a(τ)) ∈ Σ, and ξ = ξ(·, τ) is a path of functions on
Rn−k × Sn−k. The path (σ, ξ) lies in the space

(σ, ξ) ∈ Lip([0,∞),Σ)× (C([0,∞), Xs) ∩ C1([0,∞), Xs−2)).

2. (Effective dynamics) Moreover, the path σ evolves according to the following system of ODEs:

∂τσ = F⃗ (σ)ξ + M⃗(σ, ξ) for a.e. τ, (16)

σ(0) = (δij , 0, a0) ∈ Σ, (17)

where the vector fields F⃗ , M⃗ are as in (42).

3. (Dissipative estimates) Moreover, the path σ(τ) dissipates to σ(0), with the decay estimate

|σ(τ)− σ(0)| ≲ δ ⟨τ⟩−1
, τ ≥ 0. (18)

Here and below, we write ⟨·⟩ := (1 + |·|2)1/2.
Moreover, the function ξ in the decomposition (15) is non-negative for all τ , and dissipates to zero, with the decay
estimate

∥ξ(·, τ)∥Xs ≤ δ ⟨τ⟩−2
, τ ≥ 0. (19)

The result above are obtained by studying a quasilinear PDE (25) in ξ, coupled to a system of ODEs, (36)-(38) in the
parameter σ. Up to a rigid motion and a dilation, initial configuration (17) can be replaced with any σ0 ∈ Σ.

In [1, Thm. 4.31], Colding and Minicozzi have shown that the cylindrical singularity of the MCF is F -unstable. In terms
of the PDE (25), this means that the static solution ξ = 0 is linearly unstable. In view of this, Theorem 1 above states that
for a generic (i.e. finite codimensional) class of initial perturbations, ξ = 0 is asymptotically stable under the evolution (25).
This gives a justification of the generality of cylindrical singularity based on the PDE ground.
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2 The Modulation Equations: First-order Correction

In this section we develop the first order correction for the rescaled mean curvature flow.
By the relations (2) and (12), as far as Theorem 1 is concerned, it suffices to consider (9) in the unknown pair (σ, ξ),

entering the equation through (12).
There are various advantage of studying (9) instead of (1). This is typical when one is interested in blow-up solutions to

evolution equations, such as in the study of critical solitary wave dynamics where in general solution blows up with various
profiles in finite time. See for instance [11]. For one, (9) has global solutions in time. (Actually, Theorem 3 below proves
global well-posedness for (9) for a large class of initial configurations.) Thus we will mostly work with (9) and only return
to (1) in Section 3.3, when we derive geometric consequences of the effective dynamics for the original flow. Moreover, since
Theorem 1 only concerns with solutions that are normal graphs over Rn−k × Sk of the form (12), when we study (9) below,
we reparametrize Y as Y = (x, v(y, ω, τ)ω) and analyze the behaviour of the path of functions v(·, τ) : Rn−k×Sk → R, τ ≥ 0.

To this end, following [1, 2], we introduce a family of Gaussian weighted Sobolev spaces.

Definition 1. For s ≥ 0, a > 0, define the space

Xs(a) := Hs(Rn−k
y × Skω ,R; ρa), ρa := e−a|y|2/2 dµ. (20)

Here dµ is the canonical measure on Rn−k × Sk.
The space Xs(a) is equipped with the weighted inner product

⟨ϕ, ψ⟩a =

∫
ϕψρa (ϕ, ψ ∈ Xs(a)). (21)

The induced norm by this inner product on Xs(a) is denoted by ∥·∥s,a. For simplicity, we write Xs ≡ Xs(1/2) with norm

∥·∥s. The space Xs has standard Gaussian measure e−|y|2/4dµ centered at y = 0. (The choice of a pivot a = 1/2 can be
replaced by any other number.) For a linear map L : Xs(a) → Xr(b), we denote the operator norm of L as ∥L∥s,a→r,b.

For s ≤ r and 0 < b ≤ a, there holds the trivial continuous embedding

Xr(b) ⊂ Xs(a). (22)

In Appendix A, we consider the issue of estimating the weaker Xs(b)-norm in terms of the Xs(a)-norm, with a ≥ b.
Following [12], we introduced the weighted volume, or the F -functional, for a normal graph v = v(y, ω) over cylinder as

Fa(v) :=

∫
S

ρa dµS , S = S(v) :=
{
(y, v(y, ω)ω) : y ∈ Rn−k, ω ∈ Sk

}
. (23)

Using Sobolev inequalities, one can show that this functional is C2 as a Fréchet-differentiable map on the space Xs(a) with
a > 0, s ≥ 2. Indeed, denotes F ′

a(v) the X
0(a)-gradient of Fa at v. Explicitly, we have

F ′
a(v) = −∆yv + a ⟨y, ∇y⟩ v − v−2∆ωv − av + kv−1 +N1(v), (24)

where N1(v) : X
s(a) → Xs−2(a) is a quasilinear elliptic operator, given explicitly in (??). Expression (24) can be derived

from the first variation formula in [1], and the graphical MCF equation obtained in [3]. The nonlinear map F ′
a is C1 from

Xs(a) → Xs−2(a).

2.1 The graphical equations

In this subsection we consider (9) in the space Xs(a) with a > 0, s ≥ 2.

� In the remaining of this paper, unless otherwise stated, the dot denotes ∂
∂τ .

Lemma 1. X of the form (12) satisfies the MCF (1) if and only if the pair (σ, ξ) satisfies

ξ̇ = −F ′
a(
√
k/a+ ξ)− ∂σW (σ)σ̇, (25)

where F ′
a(v) is as in (24), and W : Σ → Xs(a) is given by

W (σ) :=
√
k/a+ gn−k+l,jω

lyj +
〈
z, λ−1ω

〉
, (26)

Proof. Write v =
√
k/a + ξ. Recall from the Introduction that X of the form (12) satisfies the MCF (1) if and only if the

rescaled hyersurface Y = (y, v(y, ω)ω, τ) from (2) solves (9). Following [5–8,10,16], we derive the evolution of v from (9).
Taking inner product on both sides of (9) with the vector (0, ω) ∈ Rn+1, we find

v̇ = −⟨H(v)ν(v), (0, ω)⟩ − a ⟨y, ∇y⟩ v + av − ⟨ġ(y, vω), (0, ω)⟩ − λ−1 ⟨ż, ω⟩ . (27)

Here H(v) and ν(v) denotes the mean curvature and the unit normal vector at the point (y, v(y, ω)ω) respectively. To get
(27), we use the fact that

〈
g−1(·), ·

〉
= ⟨·, g(·)⟩ as g ∈ SO(n+1), and the requirement g(0, x′) = (0, x′) for every x′ ∈ Rk+1.

The first term in the r.h.s. is calculated e.g. in [8, Appendix A], whose derivation is routine. This, together with the
following two terms, constitute the r.h.s. of (24)

Differentiating the condition (3), we find ġ(0, x′) = 0. Thus the penultimate term in the r.h.s. of (27) further simplifies
as

⟨ġ(y, vω), (0, ω)⟩ = ġn−k+l,jω
lyj (1 ≤ j ≤ n− k, 1 ≤ l ≤ k + 1).

Lastly, moving the τ -derivative of
√
k/a in the l.h.s. of (27) (recall v(τ) =

√
k/a(τ) + ξ(τ)), gives (25).
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2.2 Linearized operator at Ya

The only nonlinear term in (25) is contained in the map F ′
a, which is the (normal) X0(a)-gradient of the F -functional, (23).

In this subsection we linearize this map around the stationary solution v ≡
√
k/a, which corresponds to a cylinder with

radius
√
k/a and along the y axis. Then we study the zero-unstable modes of the linearized operator.

All of the results in this section are known by far. See for instance [1, Sec.5], [2, Sec. 3.2].

Lemma 2. The linearized operator of F ′
a(v) at the critical point v ≡

√
k/a is given by

L(a) := −La −
a

k
∆ω − 2a, (28)

where La := ∆y − a ⟨y, ∇y(·)⟩ is the drift Laplacian on the weighted space Xs(a).
Moreover, the operator L(a) is self-adjoint in Xs(a) w.r.t. the inner product from (21), and is bounded from Xs(a) →

Xs−2(a). The spectrum of L(a) is purely discrete, and the only non-positive eigenvalues, together with the associated eigen-
funcitons, are given by

− 2a, with eigenfunction Σ(0,0)(0,0,0)(a) := −
√
k

2
a−3/2, (29)

− a, with eigenfunctions Σ(0,1)(0,0,l)(a) := λ−1ω, (30)

− a, with eigenfunctions Σ(1,0)(i,0,0)(a) :=
1

∥yi∥20,a
yi, (31)

0, with eigenfunctions Σ(1,1)(i,0,l)(a) := yiωl, (32)

0, with eigenfunctions Σ(2,0)(i,j,0)(a) :=
1

∥ayiyj − δij∥20,a
(ayiyj − δij). (33)

Here and in the remaining of this paper, the indices l = 1, . . . , k + 1 and i, j = 1, . . . , n− k.
Moreover, the functions in (29)-(32) are mutually orthogonal w.r.t. the inner product (21).

Remark 1. Notice that we do not normalize (29),(30) and (32). The point is that these correspond to various components
of the Fréchet derivative ∂σW (σ), where W is as in (26).

Thus, with La given in (28), we can rewrite (25) as

ξ̇ = −L(a)ξ −N(a, ξ)− ∂σW (σ)σ̇, (34)

where the nonlinearity N(a, ξ) is defined by this expansion. This map is calculated explicitly in (??). In Section ??, we
study some key properties of the nonlinearity.

2.3 The modulation equation

In this subsection we study (34), which is equivalent to (25) and the rescaled MCF, (9). Equation (34) is the central subject
in the remaining sections.

It is important to note that some, but not all of the zero-unstable modes of the linearized operator L(a) are due to broken
symmetries. Indeed, for Σ(m,n)(a) with (m,n) = (0, 0), (0, 1), (1, 1), there exists a path σ(s) ∈ Σ (the manifold defined in
(8)) s.th.

Σ(m,n)(i,j,l)(a) = ∂s|s=0Tσ(s)Ya.

Here Tσ = Tg,z,a denotes the action of symmetry on the graph function, derived from (2), and Ya is the cylinder from (10).
For example, take σ(s) = (g0, z(s), a0) with a path z(s) ∈ Rk+1, ∂s|s=0z(s) = λ−1e1. Then

∂s|s=0Tσ(s)Ya0
= ∂s|s=0(

√
k/a0 + zl(s)ω

l) = Σ(0,1),(0,0,1)(a0).

Consequently, with a proper choice of σ as a function of ξ, we can eliminate these modes. This is the content of the next
lemma.

Lemma 3. Suppose the pair (σ, ξ) is a global solution to (25), s.th.〈
ξ(0), Σ(m,n)(a(0))

〉
a(0)

= 0

for (m,n) = (0, 0), (0, 1), (1, 1). Then ξ satisfies the orthogonality condition〈
ξ(τ), Σ(m,n)(a(τ))

〉
a(τ)

, τ ≥ 0, (m,n) = (0, 0), (0, 1), (1, 1), (35)

4



if and only if σ = (g, z, a) satisfies the modulation equations:∥∥∥Σ(1,1)(j,0,l)(a)
∥∥∥2
0,a
ġn−k+l,j =−

〈
N(a, ξ), Σ(1,1)(j,0,l)(a)

〉
a
, (36)∥∥∥Σ(0,1)(0,0,l)(a)

∥∥∥2
0,a
żl =a

〈
ξ, Σ(0,1)(0,0,l)(a)

〉
a

−
〈
N(a, ξ), Σ(0,1)(0,0,l)(a)

〉
a

+
〈
ξ, ∂τΣ

(0,1)(0,0,l)(a)
〉
a
,

(37)

∥∥∥Σ(0,0)(a)
∥∥∥2
0,a
ȧ =2a

〈
ξ, Σ(0,0)(a)

〉
a

−
〈
N(a, ξ), Σ(0,0)(a)

〉
a
+
〈
ξ, ∂τΣ

(0,0)(a)
〉
a
.

(38)

Remark 2. The terminology modulation equations is common in the study of solitary wave dynamics, e.g. [4, 9, 14, 15], and
refers to equations of the form (36)-(38), derived from a condition as (35). We adopt the same terminology here.

Proof. Differentiating both sides of (35) w.r.t. τ , we find that (35) holds for all τ ≥ 0 if and only if

1. (35) holds for τ = 0;

2. For τ > 0, there holds 〈
ξ̇(τ), Σ(m,n)(a(τ))

〉
a(τ)

= −
〈
ξ(τ), ∂τΣ

(m,n)(a(τ))
〉
a(τ)

. (39)

The first point is in the assumption. For the second point, at time τ , taking the a(τ)-weighted inner product (see (21)) of
both sides of (34), using the spectral property of L(a) shown in Lemma 2, together with the orthogonality among Σ(m,n) as
L(a) is self-adjoint in Xs(a), we conclude that (39) is equivalent to (38).

From (36)-(38) we see that if we have a priori control of ξ in Xs-norm, then we can ensure that the path σ(τ) stays
approximately constant. This is the usual low velocity condition for an adiabatic theory.

3 The Quadratic Correction Φ and Its Properties

In this section we define the key map Φ in Theorem 1, which originates from a fixed point scheme. Then we prove Theorem 1,
assuming the results in Sects. 4-6. These results are inspired by [13] and we use some of the notations there.

From now on we will often work with Xs(a) spaces with different a. In order to facilitate this effort, we introduce the
following notion of admissible paths:

Definition 2. Fix 0 < δ ≪ 1. A path σ(τ) = (g(τ), z(τ), a(τ)) ∈ Σ is admissible if the following holds:

1. The map τ 7→ σ(τ) is continuous and locally Lipschitz.

2. The entire path a(τ) lies in the δ-neighbourhood of a(0), i.e.

sup
τ≥0

|a(τ)− a(0)| ≤ δ.

3. Initially, a(0) ≥ 2δ + 1/2;

4. The path z(τ) <
√
k/ae

∫ τ a, or equivalently z(τ)/λ(τ) <
√
k/a for all τ .

Item 1 above is a standard regularity requirement to make sense of the velocity of the path σ. Items 2-3, which are the
most important ones, are imposed for several reasons. First, we want to study (25) in the space Xs ≡ Xs(1/2), while from
time to time we consider the stronger norm ∥·∥s,a(τ). These conditions ensure a(τ) ≥ 1/2 and therefore Xs ⊂ Xs(a(τ)) for

all τ by (22). Secondly, for some estimates, e.g. to bound a projection into an eigenspace of L(a), we need a to stay within
a fixed range, so that these estimates can be made independent of a. Thirdly, for some other estimates, e.g. the nonlinear
estimate (??), we need a(τ) to stay a fixed distance away from the pivotal number 1/2. Item 4 above is imposed so that the
function W in (26) remains bounded.

3.1 The definition of Ψ

In this subsection, we introduce another key map Ψ. This map goes into the definition of the map Φ in Theorem 1.
Consider the following linear equation obtained by freezing coefficients in (34) and the modulation equations (36)-(38)

at a fixed path
(σ(0), ξ(0)) ∈ Lip([0,∞),Σ)× (C([0,∞), Xs) ∩ C1([0,∞), Xs−2)), (40)
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given as follows:

ξ̇ = −L(a(0))ξ −N(a(0), ξ(0))− ∂σW (σ(0))σ̇, (41)

σ̇ = F⃗ (σ(0))ξ + M⃗(σ(0), ξ(0)), (42)

where F⃗ , M⃗ are defined by isolating the linear and nonlinear terms in ξ respectively in (36)-(38). For instance, the last entry

of F⃗ (σ(0))ξ is given by

− 1∥∥Σ(0,0)(a(0))
∥∥2
a(0)

(
2a(0)

〈
ξ, Σ(0,0)(a(0))

〉
a(0)

+
〈
ξ, ∂τΣ

(0,0)(a(0))
〉
a(0)

)
,

and the last entry of M⃗(σ(0), ξ(0)) is given by

− 1∥∥Σ(0,0)(a(0))
∥∥2
a(0)

〈
N(a(0), ξ(0)), Σ(0,0)(a(0))

〉
a(0)

.

To (41)-(42) we associate the initial configuration

σ(0) = (δij , 0, a0) for some fixed a0 > 1/2, (43)

ξ(0) = η0 + βiΣ
(1,0)(i,0,0)(a0) + γijΣ

(2,0),(i,j,0)(a0), (44)

where η0 ∈ Xs(a0) is fixed, and and βi, γij ∈ R are to be chosen later as functions of η0.
In the remaining of this paper, the central object is the Cauchy problem (41)-(44). In Appendix ??, we show the linear

system (41)-(42) is equivalent to a single linear equation

ξ̇ + L(a(0))ξ = −W(σ(0))ξ − Ñ(a(0), ξ(0)), (45)

where the maps W, Ñ are defined in (??). We also show the Cauchy problem (41)-(44) has a unique global solution in the
space (40).

Now, we set up a contraction scheme in the following space:

Definition 3. Fix 0 < δ ≪ 1. The space Aδ = Aσ
δ ×Aξ

δ consists of

(σ, ξ) ∈ Lip([0,∞),Σ)× (C([0,∞), Xs) ∩ C1([0,∞), Xs−2)),

s.th. the following holds:

1. σ(0) is as in (43), with a0 ≥ 1
2 + 2δ;

2. For some fixed c0 > 0, there hold the decay estimates

|σ̇(τ)| ≤ c0δ ⟨τ⟩−2
, τ ≥ 0, (46)

∥ξ(τ)∥s ≤ δ ⟨τ⟩−2
, τ ≥ 0; (47)

3. Let b := 1
2 − 4δ. There holds the pivot condition from Lemma 4, i.e.

∥ξ(τ)∥2s,b ≤ c, τ ≥ 0, (48)

for some fixed c > 0.

Clearly, Aδ is not empty, as the pair (σ, ξ) ≡ (σ(0), 0) lies in this space.
Item 1 above amounts to fixing an initial cylindrical coordinate. Up to a rigid motion in Rn+1 and an initial dilation,

(43) can be replaced by any other parameters. The decay conditions in Item 2, (46)-(47), are the most important ones here,
for the following reasons. First, these correspond to the claimed decay properties from Theorem 1, and finding a fixed point
in Aδ amounts to constructing a global solution to (45). Secondly, if σ ∈ Aσ

δ , then σ is admissible as in Definition 2, and we
have the convenient properties mentioned earlier. Item 4 has to do with the interpolation from Lemma 4, whose importance
is explained in Section A. Of course, if (48) holds, then ξ(τ) ∈ Xs(b). But we never use this fact other than a pivot condition
for deriving estimates in Xs.

Consider the solution map

Ψ : (σ(0), ξ(0)) 7→ the unique solution (σ, ξ) to (41)-(44). (49)

In Lemma ??, we show this map is well-defined. Hereafter we want to show that

1. Ψ(Aδ) ⊂ Aδ;

2. Ψ : Aδ → Aδ is a contraction w.r.t. a suitable norm on Aδ.

In Section 4, we show the first point holds for appropriately chosen initial configurations (44). In Section 5 we show the
second point holds if δ ≪ 1.

Remark 3. Consider the initial configuration (44). The constants βi and γij are to be determined later as a function of
η0 ∈ Xs(a0). This way the map Ψ depends only on the function η0, i.e. Ψ = Ψ(·, η0).

Indeed, if η0 = 0, then it is easy to see that the fixed point of Ψ(·, 0) is just the vector (σ, ξ) ≡ (σ(0), 0) in Aδ. This
corresponds to the trivial static solution of (34), namely the cylinder of radius

√
k/a0. On the other hand, if η0 ̸= 0, then

in general Ψ(0, η0) ̸= 0 by (49).
For simplicity of notation, most of the time we do not write Ψ = Ψ(·, η0) but let this be understood.
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3.2 The definition of Φ

For a function η, the map Φ is defined in terms of the fixed point of Ψ = Ψ(·, η) (see Remark 3). But first, we need to
introduce a suitable parameter space for Φ.

Definition 4. Let a0 > 1/2 be as in (43). Let 0 < δ ≪ 1, 0 < b < 1/2 be as in Definition 3. Let C > 0 be a large constant
depending on the absolute, implicit constant in (63).

The space
Bδ ⊂ Xs(b) ⊂ Xs ⊂ Xs(a0)

consists of all functions η = η(y, ω) s.th.

∥η∥s < δ, (50)

∥η∥2s,b ≤ c/2, where the number c > 0 is as in (48), (51)

η(y, ω) ≥ δ and |η(y, ω)| ≥ Cδ2 |y|2 for |y|2 ≥ C−1δ−1. (52)

The space S = Xs(a0) is the orthogonal complement to all the zero-unstable modes in (29)-(33) of the linearized operator
L(a0) w.r.t. the X

0(a0)-inner product defined in (21).

We will explain the the meaning of this parameter space below. For now, observe that the codimension of S is the sum
of the multipliciteis of all the non-positive eigenvalues of L(a0), which equals to

codimS = n+ 2 +
(n− k)(n− k + 3)

2
.

Notice that, as pointed out in [2, Eqn. (3.44)], not all of the zero-unstable modes in (29)-(33) are linearly independent.
Now we define the key map Φ in Theorem 1.

Definition 5 (the quadratic correction Φ). For η0 ∈ Bδ ∩ S as in Definition 4, define

Φ(η0) := βi(η0)Σ
(1,0)(i,0,0)(a0) + γij(η0)Σ

(2,0),(i,j,0)(a0), (53)

where βi, γij are defined in Theorem 3.

Remark 4. Consider the requirements from Definition 4. In view of the quadratic estimates (13), for sufficiently small δ,

conditions (50)-(51) ensure the compatibility to impose the initial condition ξ(0) = η0 + Φ(η0) for a path ξ ∈ Aξ
δ. (I.e.

this ensures ∥ξ(0)∥s ≤ δ for sufficiently small δ). Condition (52) has to to with the geometric interpretation of Theorem 1.
Indeed, for sufficiently small δ, by the definition (53) above and the formulae (31), (33), condition (52) ensures the function
η0 + Φ(η0) ≥ 0 on the entire cylinder. In this case, we can interpret this function as a normal graph over the the cylinder,
parametrizing the hypersurface

Y0 = (y, (
√
k/a0 + η0 +Φ(η0))ω), y ∈ Rn−k, ω ∈ Sk.

By the avoidance principle for MCF, it follows that a flow satisfying (9) with initial configuration Y0 above remains to be a
normal graph over the cylinder of radius

√
k/a0 for all time. This justifies the geometric meaning for the analysis of PDEs

in terms of the graph function ξ in the remaining sections.

Using the modulation equations from Section 2.3, we can ensure that a flow generated by a function η0 ∈ Bδ ∩ S under
(34) remains orthogonal at all τ ≥ 0 to all of the zero-unstable modes that are due to broken symmetry (see a discussion
at the beginning of Section 2.3). Yet, this does not suffice to give any dissipative estimate because of the remaining zero-
unstable modes that cannot be eliminated by the modulation equations, namely Σ(1,0) (horizontal translation) and Σ(2,0)

(shape instability). The former is protected by the symmetry of cylinder lying along the y-axis. The latter is not due to any
symmetry.

3.3 Proof of the Main Results

In this subsection we assume Theorem 2-Theorem 4 hold. Then we prove the main results from Section 1.

Proof of Theorem 1, assuming Theorem 2-Theorem 4. By construction, the fixed point (σ, ξ) in Aδ of the map Ψ solves the
graphical rescaled MCF (34), coupled to the modulation equations (36)-(38), with initial configuration given by

σ(0) = (δij , 0, a0), ξ(0) = η0 +Φ(η0).

This amounts to a global solution to the rescaled MCF (9) satisfying

σ̇ = F⃗ (σ)ξ + M⃗(σ, ξ), Y (t) = (y, (
√
k/a(t) + ξ(t))ω), (54)

together with the initial configuration

σ(0) = (δij , 0, a0), Y (0) = (y, (
√
k/a0 + η0 +Φ(η0))ω). (55)

Estimates (13)-(14) are the content of Theorem 4. Thus Parts 1-2 of the theorem is proved. The positivity of ξ follows from
the fact that ξ(0) ≥ 0, which holds by (52), and the avoidance principle for MCF, c.f. Remark 4. The remainder estimates
(18)-(19) come from the decay condition in the space Aδ in which Ψ is a contraction, namely (46)-(47).
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Proof of Corollary ??. Without loss of generality, suppose t0 = 0. Let X be a maximal solution to (1), and suppose for
some λ0 > 0, the hypersurface λ−1

0 X(·, 0) ∈ M with M given in (??). Then, by Theorem 1, X is of the form (12) for all
t < T , and X is uniquely determined by the pair σ(τ(t)), ξ(y(x, t), ω, τ(t)) constructed in Theorem 3 below.

In terms of the slow time variable τ , the Cauchy problem for σ in (16)-(17) uniquely determines the axis and radius of the
limit cylinder given the initial profile. This system of ODEs does not depend on taking any particular sequence of λ → ∞
in the rescaling procedure, and the solution to the Cauchy problem is unique by Theorem 3. Thus Corollary ?? follows.

4 The Mapping Property of Ψ

In this section we prove that for appropriately chosen constants βi, γij in (44) the Ψ maps from Aδ into itself.
Recall that Ψ maps a fixed path (σ(0), ξ(0)) ∈ Aδ to the global solution to (45) with initial configuration (43)-(44),

constructed explicitly in Lemma ??.

Theorem 2. For every η0 ∈ Bδ ∩ S as in Definition 4 and every fixed path (σ(0), ξ(0)) ∈ Aδ, there exist unique coefficients
βi, γij, depending on the choice of σ(0), ξ(0) only, s.th. the solution to (41)-(44) lies in Aδ.

Moreover, there hold the quadratic estimates ∣∣∣βi(σ(0), ξ(0))
∣∣∣ ≲ δ2, (56)∣∣∣γij(σ(0), ξ(0))
∣∣∣ ≲ δ2. (57)

Moreover, for two given paths σ(m), ξ(m),m = 1, 2, there hold the Lipschitz estimates∣∣∣βi(σ(0), ξ(0))− βi(σ
(1), ξ(1))

∣∣∣ ≲ δ
∥∥∥(σ(0), ξ(0))− (σ(1), ξ(1))

∥∥∥ , (58)∣∣∣γij(σ(0), ξ(0))− γij(σ
(1), ξ(1))

∣∣∣ ≲ δ
∥∥∥(σ(0), ξ(0))− (σ(1), ξ(1))

∥∥∥ , (59)

(60)

where the norm in the r.h.s. is defined in (61).

5 The Contraction Property of Ψ

In this section we prove the map Ψ : Aδ → Aδ defines a contraction w.r.t. the following norm:

∥(σ, ξ)∥ = sup
τ≥0

(c−1
0 ⟨τ⟩ |σ(τ)− τ(0)|+ ⟨τ⟩2 ∥ξ(τ)∥s). (61)

Here c0 > 0 is the constant in (46). This defines a norm equivalent to the uniform one in the space C([0,∞),Σ × Xs),
in which the the space Aδ from Definition 3 is the closed ball of size O(δ) around zero w.r.t. the norm (61). This shows
(Aδ, ∥·∥) is complete.

Now we show Ψ is a contraction in (Aδ, ∥·∥). This essentially implies all of the statements in Theorem 1.

Theorem 3. The map Ψ : Aδ → Aδ defined in (49) is a contraction with respect to the norm (61), satisfying∥∥Ψ(U1)−Ψ(U2)
∥∥ ≤ δ1/2

∥∥U1 − U0
∥∥ (U1, U2 ∈ Aδ). (62)

Consequently, there exist unique constants

βi(η0), γij(η0) = O(δ2), (63)

s.th. there exists a unique solution to the nonlinear system (34), (36)-(38) with initial condition (43) and this choice of βi,
γij in (44).

Remark 5. As a by-product, this proves a global well-posedness result for the rescaled MCF (9). The admissible set of initial
configurations forms a finite-codimensional manifold in Xs. The global solutions constructed here does not necessarily arise
from rescaling a given solution to (1).

6 A Sable Manifold Theorem for the Rescaled MCF

In this section we consider Theorem 1 as a stable manifold theorem for the rescaled MCF, (34).
Define a set

M := {η +Φ(η) : η ∈ Bδ ∩ S} (0 < δ ≪ 1). (64)

This set corresponds to the one in (??) in the obvious way, and therefore is denoted with the same symbol. Recall that the
map Φ, given in Definition 5, maps each η ∈ Bδ ∩S in the parameter space to the fixed point of the map Ψ(·, η) in the space
Aδ.

In what follows, we show the effect of Φ amounts to a second order perturbation of Bδ∩S, and consequently the manifold
M is non-degenerate. We conjecture that in fact Φ is a C1 immersion.

We also show a Lipschitz estimate for Φ, This shows M is a Lipschitz graph over Bδ ∩S. By Rademacher’s theorem, this
justifies the treatment of M as a manifold.
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Theorem 4. The map Φ = Φ in Definition 5 satisfies

∥Φ(η0)∥s ≲ ∥η0∥2s (η0 ∈ Bδ ∩ S), (65)

∥Φ(η0)− Φ(η1)∥ ≲ δ ∥η0 − η1∥ (η0, η1 ∈ Bδ ∩ S). (66)

A Elementary Lemmas

In this section we prove some abstract and elementary lemmas. Despite their simple appearcance, they play crucial roles in
Sects. 4-5.

Recall that the weighted Sobolev space Xs(a) is defined in Section 2. As discussed in that section, for two numbers
b ≤ 1/2 ≤ a we have the trivial embedding

Xs(b) ≤ Xs ≡ Xs(1/2) ⊂ Xs(a) (s ≥ 0).

In Sect. 4, we are concerned with the Xs-estimate for a family of functions ϕ(t) ∈ Xs(b), knowing some estimate of the
varying norm ∥ϕ(t)∥s,a(t) for a function a(t) ≥ 1/2. Lemma 4 below allows us to deal with this issue.

Definition 6 (pivot condition). Fix some 0 < δ < 1/8. A family of functions ϕ(·, t) : Rn−k × Sk → R, t ≥ 0 satisfied the
pivot condition if there is constant c > 0 independent of t s.th.∫ ∑

|α|≤s

|∂αϕ(t)|2 ρb ≤ c, b :=
1

2
− 4δ > 0. (67)

Equivalently, this means ϕ(t) ∈ Xs(b) and is uniformly bounded for all t in the Xs(b)-norm.

Lemma 4. Let a(t) be a function satisfying 0 ≤ a(t) − 1/2 ≤ 2δ. Suppose ϕ(t) satisfies the pivot condition (67), and
∥ϕ(t)∥s,a(t) ≤ g(t) for some positive function g. Then there holds

∥ϕ(t)∥s ≤ c1/12g(t)2/3. (68)

Proof. Let u :=
∑

|α|≤s |∂αϕ|
2
. Then uρ1/2 = (u2/3ρ2a/3)(u

1/3ρ 1
2−

2a
3
). By Hölder’s inequality with p = 3/2 and q = 3, we

find

∥ϕ∥2s =

∫
uρ1/2 ≤

(∫
uρa

)2/3(∫
uρ 3

2−2a

)1/3

= ∥ϕ∥4/3s,a

(∫
uρ 3

2−2a

)1/3

. (69)

The assumption 0 ≤ a − 1/2 ≤ 2δ < 1/4 implies 3
2 − 2a ≥ b > 0, and therefore the second factor in the r.h.s. of (69) is

bounded by the l.h.s. of (67). Hence (68) follows from the assumption ∥ϕ∥s,a ≤ g and taking square root on both sides of
(69).

Remark 6. More generally, for all 1 < p <∞, one can vary the pivot condition to obtain similar estimate as (68) with higher
power in the r.h.s.. For our need, any power 1 < p < 2 will do.

By Lemma 4, every dissipative estimate in terms of the Xs(a)-norm with possibly changing a ≥ 1/2 gives a (weaker)
dissipative estimate in the fixed Xs-norm. This is important for many estimates in Sect.4.

The following two lemmas are the mechanism behind Theorem 2 and Theorem 3, respectively. These results are obtained
in [13].

The first lemma concerns with Cauchy problem for an inhomogeneous ODE.

Lemma 5 (c.f. [13, Lem. 23]). Fix two functions a(t) ≥ c > 0 and f ∈ L1([0,∞),R). Consider the Cauchy problem for
x : [0,∞) → R:

ẋ− a(t)x = f, (70)

x(0) = x0 ∈ R. (71)

There exists a unique bounded solution if and only if

x0 = −
∫ ∞

0

fi(t
′)e−

∫ t′
0

a dt′ in (71). (72)

Moreover, if (72) holds, then the solution to (70)-(71) is given by

x(t) = −
∫ ∞

t

f(t′)e−
∫ t′
t

a, dτ ′. (73)

Proof. The variation of parameter formula gives the general solution to (70)-(71) as

x(t) = e
∫ t
0
a(x0 +

∫ t

0

fe−
∫ t′
0

a dt′). (74)

Multiplying both sides of (74) by e−
∫ t
0
a, and then taking t → ∞, we find that if x(t) ≤ C, then x(t)e−

∫ t
0
a → 0 as t → ∞

because of the uniform bound a(t) ≥ c > 0, and therefore (72) holds.
Conversely, if (72) holds, then the general formula (74) simplifies to (73). For a(t) > 0 and f ∈ L1 we can conclude from

here that x(t) ≤ ∥f∥L1 .
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For the next lemma, we adopt similar notations as in Sects. 4-6.

Lemma 6 (c.f. [13, Lem. 28]). Let A ⊂ X be a closed subset of a Banach space (X, ∥·∥). Let B ⊂ Y be a subset of a normed
vector space (Y, ∥·∥Y ). Let Ψ : X × Y → X be a map s.th.

1. Ψ(A×B) ⊂ A;

2. There exists 0 < ρ < 1 s.th.

sup
η∈B

∥∥∥Ψ(u(1), η)−Ψ(u(0), η)
∥∥∥ ≤ ρ

∥∥∥u(1) − u(0)
∥∥∥

for two vectors u(0), u(1) ∈ A;

3. There exists α, δ > 0 s.th.
sup
u∈A

∥Ψ(u, η1)−Ψ(u, η0)∥ ≤ δ ∥η1 − η0∥αY

for two vectors η1, η0 ∈ B.

Then for every η ∈ B, there exists a unique fixed point u(η) s.th. Ψ(u(η), η) = u(η). Moreover, there holds

∥u(η1)− u(η0)∥ ≤ δ

1− ρ
∥η1 − η0∥αY . (75)

Proof. Fix u∗ ∈ A. For every η ∈ B, let u(0)(η) := u∗, u
(m)(η) = Ψ(u(m−1)(η), η) for m = 1, 2, . . . , and u(η) :=

limm→∞ Ψ(u(m)(η), η). This limit exists and is the unique fixed point of Ψ in A, by Item 1-2 in the assumptions and
the standard contraction mapping theorem.

For the estimate (75), compute for m = 1, 2, . . .∥∥∥u(m)(η1)− u(m)(η0)
∥∥∥ ≤

∥∥∥Ψ(u(m−1)(η1), η1)−Ψ(u(m−1)(η0), η1)
∥∥∥

+
∥∥∥Ψ(u(m−1)(η0), η1)−Ψ(u(m−1)(η0), η0)

∥∥∥
≤ρ
∥∥∥u(m−1)(η1)− u(m−1)(η0)

∥∥∥+ δ ∥η1 − η0∥αY

≤δ
m∑

n=0

ρn ∥η1 − η0∥αY .

In the last step we use induction on m and Item 3 in the assumptions. Taking m→ ∞ gives (75).
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