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1 Introduction

Let (M, g) be a 3-dimensional, complete, oriented Riemannian manifold with non-negative curvature. Consider the
area-constrained Willmore (ACW) flow,

∂tx
N = −W (x)− λH(x). (1)

Here, for t ≥ 0, x = xt : S → M is a family of embeddings of spheres (with orientation compatible with that on M).
∂tx

N denotes the normal velocity at x, given by ∂tx
N := g(∂tx, ν), where ν = ν(x) is the unit normal vector to Σ at x.

H(x) denotes the mean curvature scalar at x. W (x) := ∆H(x) +H(x)(RicM (ν, ν) + |Å|2(x)) is the Willmore operator,
where Å(x) denotes the traceless part of the second fundamental form. λ is the Lagrange multiplier, arising due to the
area constraint.

1.1 Configuration spaces and the geometric structure of ACW

In this subsection, we layout the geometric structure of ACW flow (1).
Let c ≫ 1, k ≥ 4 be given. Define the configuration space

Xk := Hk(S,M), Xk
c :=

{
x ∈ Xk : |x(S)| = c

}
. (2)

Here, for a surface Σ := x(S) ⊂ M , we denote |Σ| :=
∫
Σ
dµg

Σ the area of Σ, where µg
Σ is the area form induced by

the embedding x and background metric g. One can check easily that (1) is well-defined in Xk
c . The spaces in (2) are

equipped with the L2-inner product

⟨ϕ, ϕ′⟩ :=
∫
S
⟨ϕ, ϕ′⟩Euclidean (ϕ, ϕ′ ∈ Xk). (3)

Let x ∈ Xk and write Σ = x(S). The tangent spaces to x at Xk and Xk
c are respectively given by

TxX
k = Xk, (4)

TxX
k
c =

{
ϕ ∈ TxX

k :

∫
Σ

Hg(ϕ, ν) = 0

}
. (5)

Here, (5) is due to the well-known first variation formula of the area functional. Notice that, slightly abusing notation,
in (5) we view ϕ as a vector field over Σ. With (3), we have a formal Riemannian structure on the configuration spaces
Xk and Xk

c .
With this geometric structure of Xk, one can view the equation (1) as the L2-gradient flow, restricted to Xk

c , of the
Willmore energy

W(Σ) =
1

4

∫
Σ

H2 dµg
Σ. (6)

We call (the images of) static solutions to (1) surfaces of Willmore type, following the nomenclature in [4]. Using Sobolev
inequalities, one can show that for k ≥ 4, the functional W is well-defined and C2 (in the sense of Fréchet derivatives)
on Xk

c .
Let dW(x) : TxX

k
c → TxX

k−4
c be the Fréchet derivative of W at an embedding x in the class Xk

c . Define the normal
L2-gradient ∇NW(x)ϕ := dW(x)ϕ for every normal, area-preserving variation ϕ on the surface Σ = x(S). (This operator
∇N depends on x.) Then by the first variation formula of the Willmore energy (see e.g. [1, Sec. 3]), this ∇NW(x) is
given by the r.h.s. of (1). This allows us to rewrite (1) as

∂tx
N = ∇NW(x) (x ∈ Xk

c ).

Equivalently, (1) is the (negative) gradient flow of the Hawking mass,

mHaw(Σ) :=
|Σ|1/2

(16π)3/2

(
16π − 1

2

∫
Σ

H2 dµg
Σ

)
, (7)

in the sense that a flow of surfaces evolving according to (1) increases the mass mHaw. For interests from physics related
to this problem, especially in general relativity, see [5].
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1.2 Main result

Under suitable assumptions on the background manifold, we derive the following results in [6]:

Theorem 1 (Main). Let k ≥ 4, c ≫ 1. Let Xk be the configuration space defined in (2). Fix R ≫ 1, δ ≪ 1 in
Definition ??.

Then there exists a map
Φ̃ : M ′ := R>R ×B1(0) ⊂ R× R3 → Xk

with the following property: Let xr,z := Φ̃(r, z). There hold:

1. (Critical point) xz parametrizes a surface of Willmore type if and only if z is a critical point of the function

W ◦ Φ̃ : R4 → R, restricted to the submanifold
{
(r, z) ∈ M ′ :

∣∣∣Φ̃(r, z)(S)∣∣∣ = c
}
.

2. (Stability) Suppose xz parametrize an admissible surface of Willmore type. Then xz is uniformly stable with small
area-preserving Hk-perturbation 1 if z is a strict local minimum of the function W ◦ Φ̃ restricted to the submanifold{
(r, z) ∈ M ′ :

∣∣∣Φ̃(r, z)(S)∣∣∣ = c
}
.

3. (Effective dynamics) Let Σ∗ = x∗(S) be an admissible surface. Let Σt = xt(S) be the global solution to (1) with
initial configuration Σ|t=0 = Σ∗ as in Theorem ??.

Then there exist α > 0, T = O(R−α), and a path (rt, zt) ∈ M ′, such that for every t ≥ T ,

∥Φ̃(rt, zt)− xt∥Xk = O(R−3). (8)

Moreover, the path (rt, zt) evolves according to

ż =
1

4π
∇zW ◦ Φ̃(r, z) +O(R−3), (9)

ṙ = 4R−2 +O(R−3). (10)

In (9) the leading term is of the order O(R−2).

4. Conversely, if (rt, zt) ∈ M ′ is a flow evolving according to (9)-(10), then there exists a global solution xt to (1) such
that (8) holds for this choice of (rt, zt) and every T ≤ t ≤ T +R.

2 The Lyapunov-Schmidt map

Let k ≥ 4, c ≫ 1. Let K ⊂ M , R ≫ 0 to be determined, and let M ′ := R>R × B1(0) ⊂ R × R3. In this section we
construct the map Φ̃ : M ′ → Xk as in Theorem 1.

2.1 Graphs over sphere

Denote Hk = Hk(S,R). This space is equipped with the L2-inner product ⟨u, v⟩ =
∫
S uv. Define the configuration space

Y k := Hk ×M ′. (11)

Define a map
θ : Y k −→ Xk

(ϕ, r, z) 7−→ r(1 + ϕ(v))v + z
. (12)

Here v ∈ S ⊂ R3 is the spherical coordinate, and recall we identify the asymptotic part (M \K) ∼= (R3 \BR(0)). Define

Y k
c :=

{
(ϕ, r, z) ∈ Y k : θ(ϕ, r, z) = c

}
(13)

This corresponds to the space of surfaces with fixed area, Xk
c , as in (2).

For ∥ϕ∥Hk ≪ 1, the map θ(ϕ, r, z) is a well-defined graph over the coordinate sphere θ(0, r, z)(S) =: Sr,z. Thus we
can also identify θ(ϕ, r, z) as a function from Sr,z ⊂ M → R. Note also that for sufficiently large c ≫ 1 and every
z ∈ B1(0) ⊂ R3, there is a coordinate sphere with area c around z. Thus the map θ is surjective onto Xk

c .

Definition 1 (topology on graphs). We say two graphs θ(ϕ, r, z), θ(ϕ′, r′, z′) are Hk-close if ∥ϕ − ϕ′∥Hk + |r − r′| +
|z − z′| ≪ 1.

1This means that if y is another admissible surface that is Hk-close to xz , then for every ϵ > 0 there exists T > 0 such that ∥xt−yt∥Xk < ϵ
for all t ≥ T , where xt, yt are respectively the flows generated by xz , y under (1).
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2.2 Lyapunov-Schmidt reduction

Denote W̄ (ϕ, r, z), Ω(ϕ, r, z) the pullbacks of the r.h.s. of (1) and the Willmore energy (6) to Y k through θ, respectively.
Explicitly, we have

W̄ (ϕ, r, z) := −W (θ(ϕ, r, z))− λH(θ(ϕ, r, z)), (14)

Ω(ϕ, r, z) := W(θ(ϕ, r, z)). (15)

Since W is C2 on Xk with k ≥ 4 and θ is smooth, the pullback energy Ω is C2 on Y k, k ≥ 4. Using Sobolev inequalities,
one can check that the partial Fréchet derivative W̄ is C1 in ϕ and smooth in r, z. This W̄ is the L2-gradient of Ω(·, r, z)
up to scaling, and satisfies the mapping property W̄ : Y k → Hk−4.

Remark 1. Notice that (14)-(15) both depend implicitly on the background metric g.

Lemma 1. The linearized operator Lr,z of W̄ at (0, r, z) with background metric g is given by

Lg
r,z : = ∂ϕW̄ (ϕ, r, z)|ϕ=0

= (∆2 + 2r−2∆+O(r−4))∂ϕθ(0, r, z) : H
k → Hk−4.

(16)

Here ∆ : Xk → Xk−2 denotes the Laplace-Beltrami operator on the coordinate sphere Sr,z ⊂ M \K, with center z and
radius r. The partial Fréchet derivative ∂ϕθ(0, r, z) : H

k → Xk is given by ξ(v) 7→ ξ(v)rv.
Moreover, the operator Lr,z is self-adjoint on Hk. The spectrum of Lr,z is purely discrete. The operator ∂ϕθ(0, r, z)

is invertible and satisfies
∥∂ϕθ(0, r, z)∥Hk→Xk = ∥∂ϕθ(0, r, z)−1∥−1

Xk→Hk = r. (17)

Proof. The operator Lg
r,z is explicitly calculated in [4, Sec. 3]. The spectral properties of Lr,z are studied in [4, Sec. 7].

The mapping properties of ∂ϕθ is obvious.

Remark 2. The linearized operator (16) depends on (the curvature of ) the background metric g on M . In the special
case when the ambient manifold M is flat, i.e. g = δij , the linearized operator L0

r,z has eigenvalue 0, and kerL0
r,z is

spanned by the constant function y0 ≡ 1, together with the spherical harmonics y1, y2, y3. Thus, so long as (M, g) is
asymptotically flat and r ≫ 1 in (16) (such as in our setting), one can view Lg

r,z as a perturbation of L0
r,z. This motivates

the following definition.

Definition 2. Define P : Hk → Hk to be the L2-orthogonal projection onto span
{
y0, . . . , y4

}
= kerL0

r,z. Define

P̄ := 1− P : Hk → Hk be the complement of P .
Let S be the set of all smooth symmetric two tensors on M . Define a map

F : Y k × S −→ Hk−4

(ϕ, r, z, h) 7−→ P̄ W̄ (ϕ, r, z)
, (18)

where W̄ is computed with background metric g = gS + h (see Section ??).

Proposition 1. Assume the ambient manifold (M, g) is Ck-closed to Schwarzschild.

1. For every z ∈ R3 with |z| < 1 and sufficiently large r ≥ R ≫ 1, there is a unique solution ϕ = ϕr,z ∈ P̄Hk to the
equation

F (ϕ, r, z, h) = 0, (19)

where F is defined in (18), and g = gS + h.

2. Moreover, the map (r, z) 7→ ϕr,z is C2, and satisfies the estimate

∥∂m
r ∂α

z ϕr,z∥Hk ≲ r−(2+2m). (20)

for every m+ |α| ≤ 2.

3. Moreover, the surface θ(ϕr,z, r, z) lies in the class of admissible surfaces in Definition ??

Proof. 1. By the Implicit Function Theorem, it suffices to check that the map F defined in (19) satisfies the following
properties:

1. F is C1 in ϕ.

2. F (0, r, z, 0) = 0 for every r, z.

3. ∂ϕF (0, r, z, 0) = L0
r,z is invertible on P̄Hk.
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The first claim follows from the regularity of W̄ on Y k and its smooth dependence on the background metric.
If the background metric is Schwarzschild, i.e. h = 0, then it is well-known that by conformal invariance the coordinate

sphere θ(0, r, z) is the global minimizer of the Willmore energy W. Since W̄ = ∂ϕΩ (see (15)), the second claim follows.
The spectrum of L0

r,z can be calculated explicitly. See for instance [2, Cor. 33]. In particular, 0 is an isolated

eigenvalue with finite multiplicity. By elementary spectral theory, this implies the restriction L̄0
r,z := L0

r,z|P̄ is invertible

as a map from P̄Hk → P̄Hk. Thus the third claim follows.
2. For the estimate (20), we expand

Lg
r,z = L0

r,z + Vr,z, (21)

where Vr,z is defined by this expression. As we discuss in Remark 2, this Vr,z is bounded from Hk → Hk−4, and satisfies
∥Vr,z∥Hk→Hk−4 = O(r−4). The restriction L̄0

r,z can bounded from below by Cr−2 for some C > 0 only depending on k.
It follows that

∥(L̄0
r,z)

−1Vr,z∥Hk−4→Hk = O(r−2).

For sufficiently large r, this together with the expansion (21) implies that the restriction L̄g
r,z : P̄Hk → P̄Hk−4 is

invertible, given explicitly as the Neumann series

(L̄g
r,z)

−1 =

∞∑
n=0

(L̄0
r,z)

−1(−Vr,z(L̄
0
r,z)

−1)n.

From here one can also read off the estimate

∥(L̄g
r,z)

−1∥P̄Hk−4→P̄Hk = O(r2). (22)

Expand F (ϕ, r, z, h) = F (0, r, z, h) + L̄g
r,zϕ+Nr,z(ϕ), where the nonlinearity Nr,z is defined by this expression. This

Nr,z is calculated explicitly in (??). For every ϕ satisfying (19), we can rearrange to get

ϕ = −(L̄g
r,z)

−1(F (0, r, z, h) +Nr,z(ϕ)). (23)

In the r.h.s. we have F (0, r, z, h) = O(r−4) by [2, Cor. 45]. Thus, for sufficiently small ϕ, we have by (22)-(23) that
∥ϕ∥Hk = O(r−2).

We now claim for ϕ ∈ Hk and m+ |α| ≤ 2, there hold

∥∂m
r ∂α

z (L̄
g
r,z)

−1ϕ∥Hk ≲ ∥ϕ∥Hk−4 , (24)

∥∂m
r ∂α

z F (0, r, z, h)∥Hk−4 ≲ r−(4+m), (25)

∥∂m
r ∂α

z Nr,z(ϕ)∥Hk−4 ≲ ∥ϕ∥2Hk . (26)

For (24), one uses the identity ∂β(L̄g
r,z)

−1 = −(L̄g
r,z)

−1∂̄βLg
r,z(L̄

g
r,z)

−1, where |β| ≤ 2 is a multi-index in both r and

z. This, together with the fact that ∂βLr,z is uniformly bounded (see (??)), implies (24). The rest follows from the
expansion in Proposition ??. Using (24)-(26) and differentiating both sides of (23), we conclude the estimates (20).

3. For sufficiently large R and every r ≥ R, we find using (20) with m = 0, α = 0 that the surface θ(ϕr,z, r, z) is
Hk-close to the coordinate sphere Sr,z. This implies θ(ϕr,z, r, z) is an admissible surface.

From now on we write ζ = ζα, α = 0, . . . , 4, for a point in (r, z) ∈ M ′. Thus, ζ0 = r and ζj = zj for j = 1, 2, 3.

Definition 3 (The Lyapunov-Schmidt map Φ). Let K ⊂ M be the compact set as in Theorem ??. Let R ≫ 1, δ ≪ 1
be given as in Theorem ??. Let M ′ := R>R ×B1(0) ⊂ R× R3.

Define the Lyapunov-Schmidt map Φ : M ′ → Hk by ζ 7→ ϕζ , where ϕζ is the solution to (19) given in Proposition 1.

Remark 3. This Φ is equivalent to the map Φ̃ in Theorem 1, through the diffeomorphism Φ(ζ) 7→ θ(Φ(ζ), ζ).

In the next proposition, we describe the geometric structure induced by the map Φ.

Proposition 2. The set
E := {θ(ϕ, ζ) : ϕ = Φ(ζ), ζ ∈ M ′}

forms an immersed C1 submanifold in Xk. The tangent space Tθ(Φ(ζ),ζ)E consists of vector fields over the surface
θ(Φ(ζ), ζ)(S). A basis of Tθ(Φ(ζ),ζ)E is given by ∂ζαθ(Φ(ζ), ζ).

Remark 4. Using the projection constructed in Lemma 2, one can view this manifold E as consisting of the adiabatic
parts of low (Willmore) energy surfaces in Xk.

Proof. The manifold structure of E follows from Definition 3, where Φ : M ′ → E is a C1 parametrization. We check the
tangent space is non-degenerate. Compute

∂ζ0θ(Φ(ζ), ζ)(v) = (1 + Φ(ζ) + ζ0∂ζ0Φ(ζ))v, (27)

∂ζjθ(Φ(ζ), ζ)(v) = ζ0∂ζjΦ(ζ)v + ej , (28)

where ej is the j-th unit vector in R3. By the estimate (20), we find〈
∂ζαθ(Φ(ζ), ζ), ∂ζβθ(Φ(ζ), ζ)

〉
= 4πδαβ +O(R−2).

This implies the claim if R is sufficiently large.

In Appendix, we introduce the general concepts of the Lyapunov-Schmidt map, and relate it to our setting above.
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2.3 Barycenter

In this subsection, we develop a new concept of barycenter for a certain class of closed surfaces in Xk.

Definition 4 (Barycenter). Let x∗ be an embedding of sphere that is Hk-close to the manifold E ⊂ Xk constructed in
Definition 3, w.r.t. the topology on graphs introduced in Definition 1. Then we can write x∗ = θ(Φ(ζ) + ξ, ζ) for some
ζ ∈ M ′, ∥ξ∥Hk ≪ 1. (There can in general be many such choice of ζ and ξ.) Expand x∗ in ξ around θ(Φ(ζ), ζ) as

x∗ = θ(Φ(ζ), ζ) + ∂ϕθ(Φ(ζ), ζ)ξ +O(∥ξ∥2Hk). (29)

Define fα ∈ Hk as

fα(ζ)(v) = ∂ζαθ(Φ(ζ), ζ)(v)N

= g(∂ζαθ(Φ(ζ), ζ)), ν(θ(Φ(ζ), ζ)) (α = 0, . . . , 3).
(30)

We say a point ζ∗ ∈ M ′ is the barycenter of x∗ if ζ∗ solves the following algebraic system:

⟨ξ, fα⟩L2 = 0 (α = 0, . . . , 3), (31)

where ξ is defined by the relation x∗ = θ(Φ(ζ∗) + ξ, ζ∗).

Remark 5. The four vectors fα span the tangent space at θ(Φ(ζt), ζt)
N to EN ⊂ Hk, where EN consists of the normal

components of the elements in the manifold E defined in Definition 3. Geometrically, the defining condition (31) for
barycenter means that the Gâteaux derivative of the map θ(·, ζ∗)N at Φ(ζ∗) along ξ-direction is perpendicular to the
tangent space Tθ(Φ(ζ∗),z∗)NEN . In terms of the expansion (29), this means the second term in the r.h.s. is L2-orthogonal
to the tangent space at the first term to E. In this sense the choice of barycenter is optimal.

Remark 6. Our definition of barycenter differs from the classical one, given by averaging over Σ w.r.t. Euclidean

background metric, namely |Σ|−1
g

∫
Σ
xdµ

δij
Σ . See [3] and the references therein. Our version of barycenter retains the key

decay property as [3, Sec. 5]. Namely, the motion of barycenter is controlled by a differential inequality using a Lyapunov
functional, defined in Section ??.

Moreover, our definition allows us to retain explicit and uniform control of a flow evolving according to (1), as we
show in Sec. ??.

In the next lemma, we define a nonlinear projection (or coordinate map) that associates barycenters to low energy
configurations in Xk.

Lemma 2 (nonlinear projection). There exists δ > 0 such that on the space

Uδ := {x = θ(Φ(ζ) + ξ, ζ) : ζ ∈ M ′, ∥ξ∥Hk < δ} , (32)

there exists a C1 map S : Uδ → M ′ such that S(x) is the barycenter of x as in Definition 4.
Moreover, we have uniform estimate on S and its derivative.

Remark 7. Essentially, the existence of such projection depends on the non-degeneracy shown in Proposition 2. Later,
we see that the barycenter ζ = S(x) determines the adiabatic (or slowly-varying) part of x.

We call the remainder ξ that satisfies x = θ(Φ(S(x)) + ξ, S(x)) the fluctuation of x.

Proof. Define a map
Γ : M ′ × Uδ ⊂ R4 ×Hk −→ R4

(ζ, x) 7−→ ⟨ξ, fα⟩L2

, (33)

where ξ is defined by the relation x = θ(Φ(ζ) + ξ, ζ). It suffices to find a map S such that ζ = S(x) solves

Γ(ζ, x) = 0. (34)

By the Implicit Function Theorem, it suffices to check that the map Γ satisfies the following properties:

1. Γ is C1 in ζ.

2. Γ(ζ, θ(Φ(ζ), ζ)) = 0.

3. The matrix ∇ζΓ(ζ, θ(Φ(ζ), ζ)) : R4 → R4 is invertible.

The first claim follows from the regularity of Φ as in Proposition 1. The second claim is trivial because in this case ξ = 0.
We now claim the rescaled matrix

Aαβ := ζ0∂ζαΓβ |(θ(Φ(ζ),ζ))

is invertible, which implies the third claim above.
Using (27)-(28), the definition (30), and the assumption on the background metric gij = δij +O((ζ0)−1), we compute

f0 = (1 +O((ζ0)−1))y0 +Φ(ζ) + ζ0∂ζ0Φ(ζ) + Φ(ζ)O((ζ0)−1) +O((ζ0)−4), (35)

fj = (1 +O((ζ0)−1))yi + ζ0∂ζjΦ(ζ) +O((ζ0)−4), (36)
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where the vectors yα span ranP as in Definition 2.
For ξ = ξ(ζ, x), we find

ξ(v) =

〈
x(v)− ζ

ζ0
, v

〉
− 1− Φ(ζ)(v), (37)

∂ζ0ξ(v) = −
〈
x(v)− ζ

(ζ0)2
, v

〉
− ∂ζ0Φ(ζ), (38)

∂ζjξ(v) = − ej

ζ0
− ∂ζjΦ(ζ)(v). (39)

Now, since x ∈ Uδ, we have Aαβ = ζ0 ⟨∂ζαξ, fβ⟩+ζ0 ⟨ξ, ∂ζαfβ⟩ = ⟨∂ζαξ, fβ⟩+O(ζ0δ). By this, and the formula (35)-(39)
above, we find that Aαβ = O(1)δαβ + O((ζ0)−2) + O(ζ0δ). For sufficiently large R ≫ 1, δ = o(R−1), and every ζ0 ≥ R,
we can conclude from here that Aαβ is invertible. This proves the existence of the C1 map S. The uniform estimates for
S and its Fréchet derivative are implicit in the arguments above.
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