Asymptotic Stability of Cylindrical Singularities

Jingxuan Zhang
University of Copenhagen

March 7, 2022

Set up

Consider the mean curvature flow (MCF) for a family of hypersurfaces given by immersions

$$
X(\cdot, t): \mathbb{R}^{n-k} \times \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{n+1}, \quad 0 \leq t<T
$$

satisfying

$$
\begin{equation*}
\partial_{t} X=-H(X) \nu(X) \tag{MCF}
\end{equation*}
$$

We are interested in the dynamical behaviour of a solution X to (MCF), which first develops a singularity at $0 \in \mathbb{R}^{n+1}, t=T>0$.

Rescaling

We consider the following time-dependent rescaling for a solution $X(\cdot, t): \mathbb{R}_{x}^{n-k} \times \mathbb{R}_{\omega}^{k+1} \rightarrow \mathbb{R}^{n+1}$ to (MCF) as follows:

$$
\begin{equation*}
X(x, \omega, t)=\underbrace{\lambda(t)}_{\in \mathbb{R}_{>0}} \underbrace{g(t)}_{O(n+1)} Y(\underbrace{y(x, t)}_{\in \mathbb{R}^{n-k}}, \omega, \underbrace{\tau}_{\in \mathbb{R}_{\geq 0}})+\underbrace{\zeta(t)}_{\in \mathbb{R}^{n+1}} \tag{R}
\end{equation*}
$$

Here, the immersion Y is defined through this relation, and

$$
\begin{aligned}
a(t) & \in \mathbb{R}_{>0}, \quad \lambda(t):=\left(2 \int_{t}^{T} a\left(t^{\prime}\right) d t^{\prime}\right)^{1 / 2} \\
y(x, t) & :=\lambda(t)^{-1} x, \quad \tau(t):=\int_{0}^{t} \lambda\left(t^{\prime}\right)^{-2} d t^{\prime}
\end{aligned}
$$

Remarks. Consider $X(g, \zeta, a, Y)=\lambda(a) g Y(y, \omega, \tau)+\zeta$ in (R).

1. $\lambda=\lambda(t)$ is uniquely determined by the function $a=a(t)>0$. Indeed, this λ is the unique solution to the Cauchy problem $\lambda \partial_{t} \lambda=-a, \lambda(T)=0$.
2. The terminal condition on λ ensures that the rescaling (R) gives rise to a tangent flow $Y=Y(y, \omega, \tau)$ in the microscopic variable $y=\lambda^{-1} x$ and slow time variable $\tau=\int^{t} \lambda^{-2}\left(t^{\prime}\right) d t^{\prime}$.
3. We view (g, ζ, a) in the rescaling (R) as an unknown a path in

$$
(g, \zeta, a) \in \Sigma:=O(n+1) \times \mathbb{R}^{n+1} \times \mathbb{R}_{>0}
$$

Rescaled MCF

Plugging (R) into (MCF), we find that $X=X(g, \zeta, a, Y)$ solves the MCF if and only if the quadruple (g, ζ, a, Y) solves
$\partial_{\tau} Y=-H(Y) \nu(Y)-a\left\langle y, \nabla_{y}\right\rangle Y+a Y-g^{-1} \partial_{\tau} g Y-\lambda^{-1} g^{-1} \partial_{\tau} \zeta$.
Call this the rescaled mean curvature flow.
Stationary solutions (cylinders in \mathbb{R}^{n+1}):

$$
\begin{align*}
Y & \equiv Y_{a_{0}}:=\left(y, \sqrt{\frac{k}{a_{0}}} \omega\right), \tag{1}\\
(g, \zeta, a) & \equiv\left(g_{0}, \zeta_{0}, a_{0}\right) \in \Sigma \tag{2}
\end{align*}
$$

Graphical equations

We seek maximal solution X to MCF on $\mathbb{R}_{x}^{n-k} \times \mathbb{S}_{\omega}^{k} \times \mathbb{R}_{0 \leq t<T}$ of the form (c.f. (R))

$$
x(x, \omega, t)=\lambda(t) g(t) \underbrace{\left(y(x, t),\left(\sqrt{\frac{k}{a(t)}}+\xi(y(x, t), \omega, \tau(t))\right) \omega\right)}_{\text {normal perturbation of the stationary sol. to RMCF }}+\zeta(t)
$$

Here and below, we write X of this form as $X=X(\sigma, \xi)$, where

1. $\sigma \equiv(g, \zeta, a)$ is a path of symmetry.
2. $\xi: \mathbb{R}_{y}^{n-k} \times \mathbb{R}_{\omega}^{k+1} \times \mathbb{R}_{\tau \geq 0} \rightarrow \mathbb{R}$ is a small (normal) perturbation.

Configuration spaces

For $s \geq 0, a>0$, define the Gaussian weighted Sobolev space

$$
\begin{equation*}
X^{s}(a):=H^{s}\left(\mathbb{R}_{y}^{n-k} \times \mathbb{S}_{\omega}^{k}, \mathbb{R} ; \rho_{a}\right), \quad \rho_{a}:=e^{-a|y|^{2} / 2} d \mu \tag{3}
\end{equation*}
$$

Here $d \mu$ is the canonical measure on $\mathbb{R}^{n-k} \times \mathbb{S}^{k}$.
For $s \leq r, 0<b \leq a$, clearly, $X^{r}(b) \subset X^{s}(a)$.
Huisken's F-functional:
$F_{a}(v):=\int_{S} \rho_{a} d \mu_{S}, \quad S:=\left\{(y, v(y, \omega) \omega): v: \mathbb{R}_{y}^{n-k} \times \mathbb{R}_{\omega}^{k+1} \rightarrow \mathbb{R}\right\}$.
(4)

This is C^{2} on $X^{s}(a)$ with $a>0, s \geq 2$ (assume this from now on).

Lemma (Implied Equation)

$X=X(\sigma, \xi)$ solves the MCF if and only if (σ, ξ) satisfy

$$
\begin{equation*}
\dot{\xi}=-F_{a}^{\prime}(\sqrt{k / a}+\xi)-\partial_{\sigma} W(\sigma) \dot{\sigma}, \tag{5}
\end{equation*}
$$

Here,

$$
\begin{aligned}
& F_{a}^{\prime}(v) \text { is the } X^{0}(a) \text {-gradient of } F_{a} \text { at } v, \\
& W: \Sigma \ni \sigma \mapsto \sqrt{k / a}+g_{n-k+1, j} \omega^{\prime} y^{j}+\left\langle z, \lambda^{-1} \omega\right\rangle \in X^{s}(a) .
\end{aligned}
$$

Proof.

Direct computation by plugging $X=X(\sigma, \xi)$ into the RMCF .
Below we call (5) the graphical RMCF.

Main Theorem: Set up

Let $X^{s}(a), s \geq 2, a>0$ be the Gaussian weighted Sobolev space. There exists $0<\delta \ll 1$ s.th. the following holds: For every $a_{0} \geq 1 / 2+2 \delta$, there exists a linear subspace $\mathcal{S} \subset X^{s}\left(a_{0}\right)$ with finite codimensions, an open set $\mathcal{B}_{\delta} \subset\left\{\|\eta\|_{X_{s}}<\delta\right\}$, and a map

$$
\begin{aligned}
\Phi: \mathcal{B}_{\delta} \cap \mathcal{S} & \rightarrow X^{s} \equiv X^{s}(1 / 2), \quad \text { satisfying } \\
\left\|\Phi\left(\eta_{0}\right)\right\|_{X^{s}} & \lesssim\left\|\eta_{0}\right\|_{X^{s}}^{2} \quad \text { (quadratic) }, \\
\left\|\Phi\left(\eta_{0}\right)-\Phi\left(\eta_{1}\right)\right\|_{X^{s}} & \lesssim \delta\left\|\eta_{0}-\eta_{1}\right\|_{X^{s}} \quad \text { (Lipshitz) },
\end{aligned}
$$

for every $\eta_{0}, \eta_{1} \in \mathcal{B}_{\delta} \cap \mathcal{S}$, as well as the following properties:

Main Theorem: Global existence

For every $\eta_{0} \in \mathcal{B}_{\delta} \cap \mathcal{S}$, there exists a global (i.e. $0 \leq \tau<\infty$) solution $(\sigma=(g, \zeta, a), \xi)$ to the graphical rescaled MCF

$$
\dot{\xi}=-F_{a}^{\prime}(\sqrt{k / a}+\xi)-\partial_{\sigma} W(\sigma) \dot{\sigma},
$$

with initial configuration

$$
\left.\xi\right|_{\tau=0}=\eta_{0}+\Phi\left(\eta_{0}\right),\left.\quad \sigma\right|_{t=0}=\left(\mathbf{1}_{n+1}, 0, a_{0}\right)
$$

By Implied Equation Lemma, this gives rise to a maximal sol. to MCF on $\mathbb{R}^{n-k} \times \mathbb{S}^{k+1} \times \mathbb{R}_{0 \leq t<T}$, namely $X=X(\sigma, \xi)$.

Main Theorem: Dissipative estimates

Here and below, we write

$$
\langle\cdot\rangle:=\left(1+|\cdot|^{2}\right)^{1 / 2}
$$

The solution $\xi(\cdot, \tau)$ from the existence part is non-negative for all τ, and dissipates to zero, with the decay estimate

$$
\begin{equation*}
\|\xi(\cdot, \tau)\|_{X^{s}} \leq \delta\langle\tau\rangle^{-2}, \quad \tau \geq 0 \tag{6}
\end{equation*}
$$

In fact, the choice of the open set $\mathcal{B}_{\delta} \subset\left\{\|\eta\|_{X^{s}}<\delta\right\}$ ensures $\xi(\cdot, \tau) \geq 0$ for all τ, which guarantees embeddedness of $X(\sigma, \xi)$.

Remarks on the Main Theorem

1. By definition, up to a rigid motion, cylinders with radius
$\sqrt{k / a_{0}}$ correspond to the following stationary solution to the graphic RMCF

$$
\sigma_{0} \equiv\left(g_{0}, \zeta_{0}, a_{0}\right), \quad \xi_{0} \equiv 0
$$

2. By the Main Theorem, the set

$$
M:=\left\{\eta+\Phi(\eta): \eta \in \mathcal{S} \cap \mathcal{B}_{\delta}\right\}
$$

forms a non-degenerate, finite codimensional stable manifold for the graphic RMCF, parametrized by $\mathcal{S} \subset X^{s}\left(a_{0}\right)$.

Typical element in M

Stability of Cylindrical Singularities

- In [Ann. of Math. (2) 175 (2012)], Colding-Minicozzi showed cylindrical singularities are F-unstable.
- In terms of the graphical RMCF, this means that the static solution $\xi_{0} \equiv 0$ is linearly unstable.
- By Main Theorem above, under a generic class of initial perturbations, namely those in the finite-codimensional stable manifold M, the static sol. ξ_{0} is actually asymptotically stable: a generic perturbation $\xi=\xi_{0}+\eta+\Phi(\eta)$ dissipates to $\xi_{0}=0$ as $\tau \rightarrow \infty$.

Recall $F_{a}: X^{s}(a) \rightarrow \mathbb{R}$ (Huisken's F-functional) is a C^{2} functional. The linearized operator of $F_{a}^{\prime}(v)$ at the critical point $v \equiv \sqrt{k / a}$ is

$$
L(a)=-\Delta_{y}+a\left\langle y, \nabla_{y}(\cdot)\right\rangle-\frac{a}{k} \Delta_{\omega}-2 a .
$$

Here $a>0$ corresponds to the cylindrical radius. From now on we write the graphical RMCF as

$$
\begin{aligned}
\dot{\xi} & =-F_{a}^{\prime}(\sqrt{k / a}+\xi)-\partial_{\sigma} W(\sigma) \dot{\sigma} \\
& =-L(a) \xi-N(a, \xi)-\partial_{\sigma} W(\sigma) \dot{\sigma} .
\end{aligned}
$$

Here $N(a, \xi):=F_{a}^{\prime}(\sqrt{k / a}+\xi)-L(a) \xi$ is the nonlinearity.

Linearized operator

The fact that cylinders are F-unstable has to do with the linearized operator at the cylinder.

Lemma (Colding-Minicozzi)
The linearized operator

$$
L(a)=-\Delta_{y}+a\left\langle y, \nabla_{y}(\cdot)\right\rangle-\frac{a}{k} \Delta_{\omega}-2 a
$$

is self-adjoint in $X^{s}(a)$, and is bounded from $X^{s}(a) \rightarrow X^{s-2}(a)$.
The spectrum of $L(a)$ is purely discrete, and the only non-positive eigenvalues, together with the associated eigenfuncitons, are

Zero-unstable modes of $L(a)$

$-2 a, \quad$ with eigenfunction $\Sigma^{(0,0)(0,0,0)}(a):=-\frac{\sqrt{k}}{2} a^{-3 / 2}$,
$-a, \quad$ with eigenfunctions $\sum^{(0,1)(0,0, I)}(a):=\lambda^{-1} \omega$,
$-a, \quad$ with eigenfunctions $\Sigma^{(1,0)(i, 0,0)}(a):=\frac{1}{\left\|y^{i}\right\|_{0, a}^{2}} y^{i}$,
0 , with eigenfunctions $\Sigma^{(1,1)(i, 0, l)}(a):=y^{i} \omega^{\prime}$,
0 , with eigenfunctions $\Sigma^{(2,0)(i, j, 0)}(a):=\frac{1}{\left\|a y^{i} y^{j}-\delta_{i j}\right\|_{0, a}^{2}}\left(a y^{i} y^{j}-\delta_{i j}\right)$.
Remark. Some, but not all of the zero-unstable modes of the linearized operator $L(a)$ are due to broken symmetries.

Main ideas

- So far we have only one equation for ξ, whereas we are solving for a pair of unknowns (σ, ξ).
- Introduce an equation for σ (the modulation equation) to remove the effect of the symmetry zero-unstable modes.
- Incorporate certain zero-unstable modes into the solution (!) to ensure dissipative estimates at $\tau \rightarrow \infty$.

The last point was first rigorously implemented in [J. Geom. Anal. 19 (2009)] by Zhou Gang and Sigal. Similar modulation method is customary in the study of e.g. NLS soliton.

Modulation equations

Recall the following zero-unstable modes of linearized opr. $L(a)$:
$-2 a, \quad$ with eigenfunction $\Sigma^{(0,0)(0,0,0)}(a):=-\frac{\sqrt{k}}{2} a^{-3 / 2}$,

- a, with eigenfunctions $\sum^{(0,1)(0,0, I)}(a):=\lambda^{-1} \omega$,

0 , with eigenfunctions $\Sigma^{(1,1)(i, 0, l)}(a):=y^{i} \omega^{\prime}$,
For these $\Sigma^{(m, n)}(a)$ with $(m, n)=(0,0),(0,1),(1,1)$, there exists a path $\sigma(\tau) \in \Sigma$ (the symmetry Lie group of MCF) s.th. we can eliminate the distablizing effect of these modes.

Lemma (Modulation)

Suppose (σ, ξ) is a global solution to the graphical RMCF s.th.

$$
\left\langle\xi(0), \Sigma^{(m, n)}(a(0))\right\rangle_{a(0)}=0 \quad\left(\langle\cdot, \cdot\rangle_{a}=\text { inn. prod. on } X^{0}(a)\right)
$$

for $(m, n)=(0,0),(0,1),(1,1)$.
Then ξ satisfies the orthogonality condition for all subsequent times
$\left\langle\xi(\tau), \Sigma^{(m, n)}(a(\tau))\right\rangle_{a(\tau)}=0, \quad \tau \geq 0,(m, n)=(0,0),(0,1),(1,1)$,
if and only if $\sigma=(g, z, a)$ satisfies the modulation equations:

$$
\partial_{\tau} \sigma=\vec{F}(\sigma) \xi+\vec{M}(\sigma, \xi)
$$

for some explicit vector fields \vec{F}, \vec{M}.

Proof.

Differentiating both sides of the equation

$$
\begin{equation*}
\left\langle\xi(\tau), \Sigma^{(m, n)}(a(\tau))\right\rangle_{a(\tau)}=0 \tag{7}
\end{equation*}
$$

w.r.t. τ, we find that (7) holds for all $\tau \geq 0$ if and only if

1. (7) holds for $\tau=0$;
2. For $\tau>0$, there holds

$$
\begin{equation*}
\left\langle\dot{\xi}(\tau), \Sigma^{(m, n)}(a(\tau))\right\rangle_{a(\tau)}=-\left\langle\xi(\tau), \partial_{\tau} \Sigma^{(m, n)}(a(\tau))\right\rangle_{a(\tau)} \tag{8}
\end{equation*}
$$

The first point is in the assumption. Plugging the equation for $\dot{\xi}$ (which involves $\left.\partial_{\sigma} W(\sigma) \dot{\sigma}\right)$ into (8), we get the equation for $\dot{\sigma}$.

Linear correction

The linear subspace \mathcal{S} in the Main Theorem removes all the zero-unstable modes of $L\left(a_{0}\right)$ from the configuration space $X^{s}\left(a_{0}\right)$. Hence, the codimension of \mathcal{S} is the sum of the multipliciteis of all the non-positive eigenvalues of $L\left(a_{0}\right)$, which equals to

$$
\operatorname{codim} \mathcal{S}=n+2+\frac{(n-k)(n-k+3)}{2}
$$

Hence, by the Modulation Lemma, if $\eta_{0} \in \mathcal{S}$ and σ solves the modulation equation, then the flow $\xi(t)$ generated by η_{0} remains orthogonal to $\Sigma^{(m, n)}(a),(m, n)=(0,0),(0,1),(1,1)$ for all $\tau \geq 0$.

Need of quadratic correction

The twist here is that not all of the zero-unstable modes of the linearized operator $L(a)$ can be eliminated by the modulation method. Two classes of zero-unstable modes persist:

$$
\begin{aligned}
\Sigma^{(1,0)(i, 0,0)}(a) & :=\frac{1}{\left\|y^{i}\right\|_{0, a}^{2}} y^{i} \quad(E V=-a) \\
\Sigma^{(2,0)(i, j, 0)}(a) & :=\frac{1}{\left\|a y^{i} y^{j}-\delta_{i j}\right\|_{0, a}^{2}}\left(a y^{i} y^{j}-\delta_{i j}\right) \quad(E V=0) .
\end{aligned}
$$

To eliminate these, we introduce the correction map Φ. This is quadratic in the sense that $\|\Phi(\eta)\|_{X^{s}} \lesssim\|\eta\|_{X^{s}}^{2}$ for $\eta \in \mathcal{S} \cap \mathcal{B}_{\delta}$. As we will see, $\Phi(\eta)$ incorporates certain unstable modes of $L\left(a_{0}\right)$.

Preliminaries for defining Φ

In order to define Φ, take a fixed path

$$
\left(\sigma^{(0)}, \xi^{(0)}\right) \in \operatorname{Lip}\left(\mathbb{R}_{\geq 0}, \Sigma\right) \times\left(C\left(\mathbb{R}_{\geq 0}, X^{s}\right) \cap C^{1}\left(\mathbb{R}_{\geq 0}, X^{s-2}\right)\right)
$$

Consider the following system, obtained by freezing coefficients in the graphical RMCF and the modulation equations at $\left(\sigma^{(0)}, \xi^{(0)}\right)$:

$$
\begin{align*}
& \dot{\xi}=-L\left(a^{(0)}\right) \xi-N\left(a^{(0)}, \xi^{(0)}\right)-\partial_{\sigma} W\left(\sigma^{(0)}\right) \dot{\sigma}, \\
& \dot{\sigma}=\vec{F}\left(\sigma^{(0)}\right) \xi+\vec{M}\left(\sigma^{(0)}, \xi^{(0)}\right),
\end{align*}
$$

To (LE ξ)-(LE σ) we associate the initial configurations

$$
\begin{align*}
& \sigma(0)=\left(1,0, a_{0}\right) \quad \text { for some fixed } a_{0}>1 / 2, \\
& \xi(0)=\eta_{0}+\beta_{i} \Sigma^{(1,0)(i, 0,0)}\left(a_{0}\right)+\gamma_{i j} \Sigma^{(2,0),(i, j, 0)}\left(a_{0}\right) .
\end{align*}
$$

Here $\eta_{0} \in \mathcal{B}_{\delta} \cap \mathcal{S} \subset X^{s}\left(a_{0}\right)$ is fixed, and $\beta_{i}, \gamma_{i j} \in \mathbb{R}$ are to be chosen later as functions of η_{0}. Recall that

$$
\begin{align*}
\Sigma^{(1,0)(i, 0,0)}(a) & :=\frac{1}{\left\|y^{i}\right\|_{0, a}^{2}} y^{i} \quad(E V=-a) \tag{9}\\
\Sigma^{(2,0)(i, j, 0)}(a) & :=\frac{1}{\left\|a y^{i} y^{j}-\delta_{i j}\right\|_{0, a}^{2}}\left(a y^{i} y^{j}-\delta_{i j}\right) \quad(E V=0) . \tag{10}
\end{align*}
$$

are the zero-unstable modes that persist modulation.

The solution map ψ

Consider the solution map
$\psi:\left(\sigma^{(0)}, \xi^{(0)}\right) \mapsto$ the unique solution (σ, ξ) to (LE $\left.\xi\right)-(I C \xi)$.

- Using standard parabolic theory, one can show that this map is well-defined.
- Hereafter we want to show that Ψ is a contraction in a suitable space of dissipating paths.
- Then the fixed point of Ψ will be a dissipating solution to the graphical RMCF.

Definition

Fix $0<\delta \ll 1$. The space $\mathcal{A}_{\delta}=\mathcal{A}_{\delta}^{\sigma} \times \mathcal{A}_{\delta}^{\xi}$ consists of

$$
(\sigma, \xi) \in \operatorname{Lip}\left(\mathbb{R}_{\geq 0}, \Sigma\right) \times\left(C\left(\mathbb{R}_{\geq 0}, X^{s}\right) \cap C^{1}\left(\mathbb{R}_{\geq 0}, X^{s-2}\right)\right)
$$

s.th. the following holds:

1. $\sigma(0)$ is as in $(I C \sigma)$, with $a_{0} \geq \frac{1}{2}+2 \delta$;
2. For some fixed $c_{0}>0$, there hold the decay estimates

$$
\begin{align*}
|\dot{\sigma}(\tau)| & \leq c_{0} \delta\langle\tau\rangle^{-2}, \quad \tau \geq 0 \tag{12}\\
\|\xi(\tau)\|_{s} & \leq \delta\langle\tau\rangle^{-2}, \quad \tau \geq 0 \tag{13}
\end{align*}
$$

3. Certain pivot condition (technical but easy to verify).

The contraction scheme

We want to show

1. $\Psi\left(\mathcal{A}_{\delta}\right) \subset \mathcal{A}_{\delta}$;
2. $\Psi: \mathcal{A}_{\delta} \rightarrow \mathcal{A}_{\delta}$ is a contraction w.r.t. a suitable norm on \mathcal{A}_{δ}.

Remark. Consider the initial configuration (IC ξ).
The constants β_{i} and $\gamma_{i j}$ are to be determined later as a function of $\eta_{0} \in \mathcal{B}_{\delta} \cap \mathcal{S}$. Hence, the map ψ depends only on η_{0}. Indeed, if $\eta_{0}=0$, then it is easy to see that the fixed point of $\Psi(\cdot, 0)$ is just the vector $(\sigma, \xi) \equiv(\sigma(0), 0)$ in \mathcal{A}_{δ}. This corresponds to the trivial static solution ($=$ cylinder of radius $\sqrt{k / a_{0}}$).

Definition (the quadratic correction Φ)

For $\eta_{0} \in \mathcal{B}_{\delta} \cap \mathcal{S}$, define

$$
\begin{equation*}
\Phi\left(\eta_{0}\right):=\beta_{i}\left(\eta_{0}\right) \Sigma^{(1,0)(i, 0,0)}\left(a_{0}\right)+\gamma_{i j}\left(\eta_{0}\right) \Sigma^{(2,0),(i, j, 0)}\left(a_{0}\right) \tag{14}
\end{equation*}
$$

where $\beta_{i}, \gamma_{i j}$ are some functions of η_{0}, s.th. $\Psi=\Psi\left(\cdot, \eta_{0}\right)$ has a unique fixed point in \mathcal{A}_{δ} (c.f. the initial condition (IC ξ) for ξ).

Proof of the Main Theorem.
By construction of Ψ, if it has fixed point in \mathcal{A}_{δ}, then this fixed point is a global solution to the graphical RMCF dissipating to 0 in X^{s}-norm as $\tau \rightarrow \infty$.

The heart of the matter is to show $\Psi\left(\mathcal{A}_{\delta}\right) \subset \mathcal{A}_{\delta}$. Given η_{0}, we construct explicit numbers $\beta_{i}\left(\eta_{0}\right), \gamma_{i j}\left(\eta_{0}\right)$ in the initial condition $(I C \xi)$ that fulfills this mapping property.

Theorem (Choice of β, γ)

For every $\eta_{0} \in \mathcal{B}_{\delta} \cap \mathcal{S}$ and every fixed path $\left(\sigma^{(0)}, \xi^{(0)}\right) \in \mathcal{A}_{\delta}$, there exist unique coefficients $\beta_{i}, \gamma_{i j}$, depending on the choice of $\sigma^{(0)}, \xi^{(0)}$ only, s.th. the solution to (LE $\left.\xi\right)-(\mathrm{IC} \xi)$ lies in \mathcal{A}_{δ}. Moreover, there hold the quadratic estimates

$$
\begin{align*}
\left|\beta_{i}\left(\sigma^{(0)}, \xi^{(0)}\right)\right| & \lesssim \delta^{2} \tag{15}\\
\left|\gamma_{i j}\left(\sigma^{(0)}, \xi^{(0)}\right)\right| & \lesssim \delta^{2} . \tag{16}
\end{align*}
$$

Lemma (mechanism for choosing β and γ)

Fix two functions $a(t) \geq 0$ and $f \in L^{1}\left(\mathbb{R}_{\geq 0}, \mathbb{R}\right)$. Consider the Cauchy problem for $x: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$:

$$
\begin{align*}
\dot{x}-a(t) x & =f \tag{17}\\
x(0) & =x_{0} \in \mathbb{R} . \tag{18}
\end{align*}
$$

There exists a unique solution with $\lim _{t \rightarrow \infty} x(t)=0$ if and only if

$$
\begin{equation*}
x_{0}=-\int_{0}^{\infty} f_{i}\left(t^{\prime}\right) e^{-\int_{0}^{t^{\prime}} a} d t^{\prime} \text { in (18). } \tag{19}
\end{equation*}
$$

Moreover, if (19) holds, then the solution to (17)-(18) is given by

$$
\begin{equation*}
x(t)=-\int_{t}^{\infty} f\left(t^{\prime}\right) e^{-\int_{t}^{t^{\prime}} a}, d \tau^{\prime} \tag{20}
\end{equation*}
$$

Sketch Proof of the Choice Theorem

1. Let $(\sigma, \xi):=\Psi\left(\sigma^{(0)}, \xi^{(0)}\right)$. By assumption, $\left(\sigma^{(0)}, \xi^{(0)}\right)$ satisfies the decay estimate

$$
\begin{gathered}
\left|\dot{\sigma}^{(0)}(\tau)\right| \leq c_{0} \delta\langle\tau\rangle^{-2}, \quad \tau \geq 0 \\
\left\|\xi^{(0)}(\tau)\right\|_{s} \leq \delta\langle\tau\rangle^{-2}, \quad \tau \geq 0
\end{gathered}
$$

We want to show the same for (σ, ξ).The key is to check the decay conditions for ξ. Then the decay of $\dot{\sigma}$ follows from the modulation equation.
2. Let $P^{(m, n)}(\tau)$ be the projection onto the span of the zero-unstable modes span $\left\{\Sigma^{(m, n)(i, j, l)}\left(a^{(0)}(\tau)\right)\right\}$ of $L\left(a^{(0)}(\tau)\right)$, and write $\xi^{(m, n)}:=P^{(m, n)} \xi$. Let $Q:=1-\sum P^{(m, n)}$ and write $\xi_{S}=Q \xi=\xi-\sum \xi^{(m, n)}$ (=stable projection w.r.t. $L\left(a^{(0)}\right)$).
Due to the modulation equation, we know

$$
\xi^{(m, n)}=0 \text { for }(m, n)=(0,0),(0,1),(1,1) .
$$

Now we expand

$$
\xi=\xi_{S}+\sum_{m=1,2} \xi^{(m, 0)}
$$

and plug this expansion into the graphical RMCF for ξ :

$$
\dot{\xi}=-L\left(a^{(0)}\right) \xi-N\left(a^{(0)}, \xi^{(0)}\right)-\partial_{\sigma} W\left(\sigma^{(0)}\right) \dot{\sigma} .
$$

Using the orthogonality among various eigenfunctions of the self-adjoint operator $L\left(a^{(0)}(\tau)\right)$ in the space $X^{s}\left(a^{(0)}(\tau)\right), s \geq 2$, we get the following system:

$$
\begin{align*}
\dot{\xi}_{s}-Q L\left(a^{(0)}\right) \xi_{s} & =-Q N\left(a^{(0)}, \xi^{(0)}\right), \tag{21}\\
\dot{\beta}_{i}-a^{(0)} \beta_{i} & =f_{i} \tag{22}\\
\dot{\gamma}_{i j} & =h_{i j}, \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
f_{i} & =-\left\langle N\left(a^{(0)}, \xi^{(0)}\right), \Sigma^{(1,0)(i, 0,0)}\left(a^{(0)}\right)\right\rangle_{a^{(0)}} \tag{24}\\
h_{i j} & =-\left\langle N\left(a^{(0)}, \xi^{(0)}\right), \Sigma^{(2,0)(i, j, 0)}\left(a^{(0)}\right)\right\rangle_{a^{(0)}} \tag{25}
\end{align*}
$$

The initial configurations associated to (21)-(23) are resp. the three terms in the initial condition for ξ :

$$
\xi(0)=\eta_{0}+\beta_{i} \Sigma^{(1,0)(i, 0,0)}\left(a_{0}\right)+\gamma_{i j} \Sigma^{(2,0),(i, j, 0)}\left(a_{0}\right)
$$

Since (21)-(23) are already decoupled, in what follows we consider the Cauchy problem for $\xi_{S}, \beta_{i}, \gamma_{i j}$ separately.

First, for the equation (21) for the stable part ξ_{S}, we can use standard propagator estimate to show that

$$
\begin{equation*}
\left\|\xi_{S}(\tau)\right\|_{s} \leq \delta e^{-c \tau}, \quad \tau \geq 0 \tag{26}
\end{equation*}
$$

where c is an absolute constant.

Next, applying the ODE Lemma to the equation for β

$$
\dot{\beta}_{i}-a^{(0)} \beta_{i}=f_{i},
$$

we find that $\lim _{\tau \rightarrow \infty} \beta_{i}(\tau)=0$ if and only if the initial configuration is given by

$$
\begin{equation*}
\beta_{i}(0)=-\int_{0}^{\infty} f_{i}\left(\tau^{\prime}\right) \lambda\left(\tau^{\prime}\right)^{-1} d \tau^{\prime} \quad\left(\lambda(\tau)=e^{\int_{0}^{\tau} a\left(\tau^{\prime}\right)} d \tau^{\prime}\right) \tag{27}
\end{equation*}
$$

This integral indeed converges, since $\lambda(\tau) \geq 1$, and some nonlinear estimate that shows $\left|f_{i}(\tau)\right| \lesssim\langle\tau\rangle^{-4}$.

Choose $\beta_{i}(0)$ as in (27). Then $\beta_{i}(\tau)$ is given by the ODE Lemma:

$$
\begin{equation*}
\beta_{i}(\tau)=-\int_{\tau}^{\infty} f\left(\tau^{\prime}\right) \frac{\lambda(\tau)}{\lambda\left(\tau^{\prime}\right)} d \tau^{\prime} \tag{28}
\end{equation*}
$$

For all $\tau \geq 0$, this function satisfies

$$
\begin{align*}
\left|\beta_{i}(\tau)\right| & \leq \int_{\tau}^{\infty}\left|f_{i}\left(\tau^{\prime}\right)\right| e^{-\int_{\tau}^{\tau^{\prime}} a} d \tau^{\prime} \\
& \leq \int_{\tau}^{\infty}\left|f_{i}\left(\tau^{\prime}\right)\right| d \tau^{\prime} \tag{29}\\
& \leq C \delta^{2}\langle\tau\rangle^{-3}
\end{align*}
$$

Here the last inequality follows from $\left|f_{i}\right| \lesssim \delta^{2}\langle\tau\rangle^{-4}$, due to some nonlinear estimate as before.

We conclude from (29) that

$$
\begin{equation*}
\left|\beta_{i}(0)\right| \lesssim \delta^{2} \tag{30}
\end{equation*}
$$

This gives quadratic estimate (15).
By (29) and some technical interpolation inequalities, we conclude

$$
\begin{equation*}
\left\|P^{(1,0)} \xi(\tau)\right\|_{s} \leq \delta\langle\tau\rangle^{-2} \tag{31}
\end{equation*}
$$

provided δ is sufficiently small.Using the exact same argument we can determine the unique numbers $\gamma_{i j}(\eta)=O\left(\delta^{2}\right)$ that make

$$
\begin{equation*}
\left\|P^{(2,0)} \xi(\tau)\right\|_{s} \leq \delta\langle\tau\rangle^{-2} \tag{32}
\end{equation*}
$$

This proves the Choice Theorem. \square

Thanks for your attention

