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Set up

Consider the mean curvature flow (MCF) for a family of

hypersurfaces given by immersions

X (·, t) : Rn−k × Rk+1 → Rn+1, 0 ≤ t < T ,

satisfying

∂tX = −H(X )ν(X ). (MCF)

We are interested in the dynamical behaviour of a solution X to

(MCF), which first develops a singularity at 0 ∈ Rn+1, t = T > 0.



Rescaling

We consider the following time-dependent rescaling for a solution

X (·, t) : Rn−k
x × Rk+1

ω → Rn+1 to (MCF) as follows:

X (x , ω, t) = λ(t)︸︷︷︸
∈R>0

g(t)︸︷︷︸
∈O(n+1)

Y (y(x , t)︸ ︷︷ ︸
∈Rn−k

, ω, τ︸︷︷︸
∈R≥0

) + ζ(t)︸︷︷︸
∈Rn+1

, (R)

Here, the immersion Y is defined through this relation, and

a(t) ∈ R>0, λ(t) :=

(
2

∫ T

t
a(t ′) dt ′

)1/2

,

y(x , t) := λ(t)−1x , τ(t) :=

∫ t

0
λ(t ′)−2 dt ′.



Remarks. Consider X (g , ζ, a,Y ) = λ(a)gY (y , ω, τ) + ζ in (R).

1. λ = λ(t) is uniquely determined by the function a = a(t) > 0.

Indeed, this λ is the unique solution to the Cauchy problem

λ∂tλ = −a, λ(T ) = 0.

2. The terminal condition on λ ensures that the rescaling (R)

gives rise to a tangent flow Y = Y (y , ω, τ) in the microscopic

variable y = λ−1x and slow time variable τ =
∫ t
λ−2(t ′) dt ′.

3. We view (g , ζ, a) in the rescaling (R) as an unknown a path in

(g , ζ, a) ∈ Σ := O(n + 1)× Rn+1 × R>0.



Rescaled MCF

Plugging (R) into (MCF), we find that X = X (g , ζ, a,Y ) solves

the MCF if and only if the quadruple (g , ζ, a,Y ) solves

∂τY = −H(Y )ν(Y )−a 〈y , ∇y 〉Y +aY −g−1∂τgY −λ−1g−1∂τζ.

Call this the rescaled mean curvature flow.

Stationary solutions (cylinders in Rn+1):

Y ≡ Ya0 :=

(
y ,

√
k

a0
ω

)
, (1)

(g , ζ, a) ≡ (g0, ζ0, a0) ∈ Σ. (2)



Graphical equations

We seek maximal solution X to MCF on Rn−k
x × Skω × R0≤t<T of

the form (c.f. (R))

X (x , ω, t) = λ(t)g(t)

(
y(x , t),

(√
k

a(t)
+ ξ(y(x , t), ω, τ(t))

)
ω

)
︸ ︷︷ ︸

normal perturbation of the stationary sol. to RMCF

+ζ(t),

Here and below, we write X of this form as X = X (σ, ξ), where

1. σ ≡ (g , ζ, a) is a path of symmetry.

2. ξ : Rn−k
y × Rk+1

ω × Rτ≥0 → R is a small (normal)

perturbation.



Configuration spaces

For s ≥ 0, a > 0, define the Gaussian weighted Sobolev space

X s(a) := Hs(Rn−k
y × Skω ,R; ρa), ρa := e−a|y |

2/2 dµ. (3)

Here dµ is the canonical measure on Rn−k × Sk .

For s ≤ r , 0 < b ≤ a, clearly, X r (b) ⊂ X s(a).

Huisken’s F -functional :

Fa(v) :=

∫
S
ρa dµS , S :=

{
(y , v(y , ω)ω) : v : Rn−k

y × Rk+1
ω → R

}
.

(4)

This is C 2 on X s(a) with a > 0, s ≥ 2 (assume this from now on).



Lemma (Implied Equation)

X = X (σ, ξ) solves the MCF if and only if (σ, ξ) satisfy

ξ̇ = −F ′a(
√

k/a + ξ)− ∂σW (σ)σ̇, (5)

Here,

F ′a(v) is the X 0(a)-gradient of Fa at v ,

W : Σ 3 σ 7→
√
k/a + gn−k+l ,jω

ly j +
〈
z , λ−1ω

〉
∈ X s(a).

Proof.

Direct computation by plugging X = X (σ, ξ) into the RMCF.

Below we call (5) the graphical RMCF.



Main Theorem: Set up

Let X s(a), s ≥ 2, a > 0 be the Gaussian weighted Sobolev

space.There exists 0 < δ � 1 s.th. the following holds: For every

a0 ≥ 1/2 + 2δ, there exists a linear subspace S ⊂ X s(a0) with

finite codimensions, an open set Bδ ⊂ {‖η‖X s < δ}, and a map

Φ : Bδ ∩ S → X s ≡ X s(1/2), satisfying

‖Φ(η0)‖X s . ‖η0‖2X s (quadratic),

‖Φ(η0)− Φ(η1)‖X s . δ ‖η0 − η1‖X s (Lipshitz),

for every η0, η1 ∈ Bδ ∩ S, as well as the following properties:



Main Theorem: Global existence

For every η0 ∈ Bδ ∩ S, there exists a global (i.e. 0 ≤ τ <∞)

solution (σ = (g , ζ, a), ξ) to the graphical rescaled MCF

ξ̇ = −F ′a(
√
k/a + ξ)− ∂σW (σ)σ̇,

with initial configuration

ξ|τ=0 = η0 + Φ(η0), σ|t=0 = (1n+1, 0, a0).

By Implied Equation Lemma, this gives rise to a maximal sol. to

MCF on Rn−k × Sk+1 × R0≤t<T , namely X = X (σ, ξ).



Main Theorem: Dissipative estimates

Here and below, we write

〈·〉 := (1 + |·|2)1/2.

The solution ξ(·, τ) from the existence part is non-negative for all

τ , and dissipates to zero, with the decay estimate

‖ξ(·, τ)‖X s ≤ δ 〈τ〉−2 , τ ≥ 0. (6)

In fact, the choice of the open set Bδ ⊂ {‖η‖X s < δ} ensures

ξ(·, τ) ≥ 0 for all τ , which guarantees embeddedness of X (σ, ξ).



Remarks on the Main Theorem

1. By definition, up to a rigid motion, cylinders with radius√
k/a0 correspond to the following stationary solution to the

graphic RMCF

σ0 ≡ (g0, ζ0, a0), ξ0 ≡ 0.

2. By the Main Theorem, the set

M := {η + Φ(η) : η ∈ S ∩ Bδ}

forms a non-degenerate, finite codimensional stable manifold

for the graphic RMCF, parametrized by S ⊂ X s(a0).



Typical element in M



Stability of Cylindrical Singularities

I In [Ann. of Math. (2) 175 (2012)], Colding-Minicozzi showed

cylindrical singularities are F -unstable.

I In terms of the graphical RMCF, this means that the static

solution ξ0 ≡ 0 is linearly unstable.

I By Main Theorem above, under a generic class of initial

perturbations, namely those in the finite-codimensional stable

manifold M, the static sol. ξ0 is actually asymptotically

stable: a generic perturbation ξ = ξ0 + η + Φ(η) dissipates to

ξ0 = 0 as τ →∞.



Recall Fa : X s(a)→ R (Huisken’s F -functional) is a C 2 functional.

The linearized operator of F ′a(v) at the critical point v ≡
√
k/a is

L(a) = −∆y + a 〈y , ∇y (·)〉 − a

k
∆ω − 2a.

Here a > 0 corresponds to the cylindrical radius. From now on we

write the graphical RMCF as

ξ̇ =− F ′a(
√
k/a + ξ)− ∂σW (σ)σ̇

=− L(a)ξ − N(a, ξ)− ∂σW (σ)σ̇.

Here N(a, ξ) := F ′a(
√

k/a + ξ)− L(a)ξ is the nonlinearity.



Linearized operator

The fact that cylinders are F -unstable has to do with the linearized

operator at the cylinder.

Lemma (Colding-Minicozzi)

The linearized operator

L(a) = −∆y + a 〈y , ∇y (·)〉 − a

k
∆ω − 2a

is self-adjoint in X s(a), and is bounded from X s(a)→ X s−2(a).

The spectrum of L(a) is purely discrete, and the only non-positive

eigenvalues, together with the associated eigenfuncitons, are



Zero-unstable modes of L(a)

− 2a, with eigenfunction Σ(0,0)(0,0,0)(a) := −
√
k

2
a−3/2,

− a, with eigenfunctions Σ(0,1)(0,0,l)(a) := λ−1ω,

− a, with eigenfunctions Σ(1,0)(i ,0,0)(a) :=
1

‖y i‖20,a
y i ,

0, with eigenfunctions Σ(1,1)(i ,0,l)(a) := y iωl ,

0, with eigenfunctions Σ(2,0)(i ,j ,0)(a) :=
1

‖ay iy j − δij‖20,a
(ay iy j − δij).

Remark. Some, but not all of the zero-unstable modes of the

linearized operator L(a) are due to broken symmetries.



Main ideas

I So far we have only one equation for ξ, whereas we are solving

for a pair of unknowns (σ, ξ).

I Introduce an equation for σ (the modulation equation) to

remove the effect of the symmetry zero-unstable modes.

I Incorporate certain zero-unstable modes into the solution (!)

to ensure dissipative estimates at τ →∞.

The last point was first rigorously implemented in [J. Geom. Anal.

19 (2009)] by Zhou Gang and Sigal. Similar modulation method is

customary in the study of e.g. NLS soliton.



Modulation equations

Recall the following zero-unstable modes of linearized opr. L(a):

− 2a, with eigenfunction Σ(0,0)(0,0,0)(a) := −
√
k

2
a−3/2,

− a, with eigenfunctions Σ(0,1)(0,0,l)(a) := λ−1ω,

0, with eigenfunctions Σ(1,1)(i ,0,l)(a) := y iωl ,

For these Σ(m,n)(a) with (m, n) = (0, 0), (0, 1), (1, 1), there exists a

path σ(τ) ∈ Σ (the symmetry Lie group of MCF) s.th. we can

eliminate the distablizing effect of these modes.



Lemma (Modulation)

Suppose (σ, ξ) is a global solution to the graphical RMCF s.th.〈
ξ(0), Σ(m,n)(a(0))

〉
a(0)

= 0 (〈·, ·〉a = inn. prod. on X 0(a))

for (m, n) = (0, 0), (0, 1), (1, 1).

Then ξ satisfies the orthogonality condition for all subsequent times〈
ξ(τ), Σ(m,n)(a(τ))

〉
a(τ)

= 0, τ ≥ 0, (m, n) = (0, 0), (0, 1), (1, 1),

if and only if σ = (g , z , a) satisfies the modulation equations:

∂τσ = ~F (σ)ξ + ~M(σ, ξ),

for some explicit vector fields ~F , ~M.



Proof.

Differentiating both sides of the equation〈
ξ(τ), Σ(m,n)(a(τ))

〉
a(τ)

= 0 (7)

w.r.t. τ , we find that (7) holds for all τ ≥ 0 if and only if

1. (7) holds for τ = 0;

2. For τ > 0, there holds〈
ξ̇(τ), Σ(m,n)(a(τ))

〉
a(τ)

= −
〈
ξ(τ), ∂τΣ(m,n)(a(τ))

〉
a(τ)

.

(8)

The first point is in the assumption. Plugging the equation for ξ̇

(which involves ∂σW (σ)σ̇) into (8) , we get the equation for σ̇.



Linear correction

The linear subspace S in the Main Theorem removes all the

zero-unstable modes of L(a0) from the configuration space X s(a0).

Hence, the codimension of S is the sum of the multipliciteis of all

the non-positive eigenvalues of L(a0), which equals to

codimS = n + 2 +
(n − k)(n − k + 3)

2
.

Hence, by the Modulation Lemma, if η0 ∈ S and σ solves the

modulation equation, then the flow ξ(t) generated by η0 remains

orthogonal to Σ(m,n)(a), (m, n) = (0, 0), (0, 1), (1, 1) for all τ ≥ 0.



Need of quadratic correction

The twist here is that not all of the zero-unstable modes of the

linearized operator L(a) can be eliminated by the modulation

method. Two classes of zero-unstable modes persist:

Σ(1,0)(i ,0,0)(a) :=
1

‖y i‖20,a
y i (EV = −a),

Σ(2,0)(i ,j ,0)(a) :=
1

‖ay iy j − δij‖20,a
(ay iy j − δij) (EV = 0).

To eliminate these, we introduce the correction map Φ. This is

quadratic in the sense that ‖Φ(η)‖X s . ‖η‖2X s for η ∈ S ∩ Bδ.
As we will see, Φ(η) incorporates certain unstable modes of L(a0).



Preliminaries for defining Φ

In order to define Φ, take a fixed path

(σ(0), ξ(0)) ∈ Lip(R≥0,Σ)× (C (R≥0,X s) ∩ C 1(R≥0,X s−2)).

Consider the following system, obtained by freezing coefficients in

the graphical RMCF and the modulation equations at (σ(0), ξ(0)):

ξ̇ = −L(a(0))ξ − N(a(0), ξ(0))− ∂σW (σ(0))σ̇, (LEξ)

σ̇ = ~F (σ(0))ξ + ~M(σ(0), ξ(0)), (LEσ)



To (LEξ)-(LEσ) we associate the initial configurations

σ(0) = (1, 0, a0) for some fixed a0 > 1/2, (ICσ)

ξ(0) = η0 + βiΣ
(1,0)(i ,0,0)(a0) + γijΣ

(2,0),(i ,j ,0)(a0). (ICξ)

Here η0 ∈ Bδ ∩ S ⊂ X s(a0) is fixed, and βi , γij ∈ R are to be

chosen later as functions of η0. Recall that

Σ(1,0)(i ,0,0)(a) :=
1

‖y i‖20,a
y i (EV = −a), (9)

Σ(2,0)(i ,j ,0)(a) :=
1

‖ay iy j − δij‖20,a
(ay iy j − δij) (EV = 0). (10)

are the zero-unstable modes that persist modulation.



The solution map Ψ

Consider the solution map

Ψ : (σ(0), ξ(0)) 7→ the unique solution (σ, ξ) to (LEξ)-(ICξ). (11)

I Using standard parabolic theory, one can show that this map

is well-defined.

I Hereafter we want to show that Ψ is a contraction in a

suitable space of dissipating paths.

I Then the fixed point of Ψ will be a dissipating solution to the

graphical RMCF.



Definition

Fix 0 < δ � 1. The space Aδ = Aσδ ×A
ξ
δ consists of

(σ, ξ) ∈ Lip(R≥0,Σ)× (C (R≥0,X s) ∩ C 1(R≥0,X s−2)),

s.th. the following holds:

1. σ(0) is as in (ICσ), with a0 ≥ 1
2 + 2δ;

2. For some fixed c0 > 0, there hold the decay estimates

|σ̇(τ)| ≤ c0δ 〈τ〉−2 , τ ≥ 0, (12)

‖ξ(τ)‖s ≤ δ 〈τ〉
−2 , τ ≥ 0; (13)

3. Certain pivot condition (technical but easy to verify).



The contraction scheme

We want to show

1. Ψ(Aδ) ⊂ Aδ;

2. Ψ : Aδ → Aδ is a contraction w.r.t. a suitable norm on Aδ.

Remark. Consider the initial configuration (ICξ).

The constants βi and γij are to be determined later as a function

of η0 ∈ Bδ ∩ S. Hence, the map Ψ depends only on η0.

Indeed, if η0 = 0, then it is easy to see that the fixed point of

Ψ(·, 0) is just the vector (σ, ξ) ≡ (σ(0), 0) in Aδ. This corresponds

to the trivial static solution (=cylinder of radius
√
k/a0).



Definition (the quadratic correction Φ)

For η0 ∈ Bδ ∩ S, define

Φ(η0) := βi (η0)Σ(1,0)(i ,0,0)(a0) + γij(η0)Σ(2,0),(i ,j ,0)(a0), (14)

where βi , γij are some functions of η0, s.th. Ψ = Ψ(·, η0) has a

unique fixed point in Aδ (c.f. the initial condition (ICξ) for ξ).

Proof of the Main Theorem.

By construction of Ψ, if it has fixed point in Aδ, then this fixed

point is a global solution to the graphical RMCF dissipating to 0 in

X s -norm as τ →∞.



The heart of the matter is to show Ψ(Aδ) ⊂ Aδ. Given η0, we

construct explicit numbers βi (η0), γij(η0) in the initial condition

(ICξ) that fulfills this mapping property.

Theorem (Choice of β, γ)

For every η0 ∈ Bδ ∩ S and every fixed path (σ(0), ξ(0)) ∈ Aδ, there

exist unique coefficients βi , γij , depending on the choice of

σ(0), ξ(0) only, s.th. the solution to (LEξ)-(ICξ) lies in Aδ.
Moreover, there hold the quadratic estimates∣∣∣βi (σ(0), ξ(0))∣∣∣ . δ2, (15)∣∣∣γij(σ(0), ξ(0))∣∣∣ . δ2. (16)



Lemma (mechanism for choosing β and γ)

Fix two functions a(t) ≥ 0 and f ∈ L1(R≥0,R).Consider the

Cauchy problem for x : R≥0 → R:

ẋ − a(t)x = f , (17)

x(0) = x0 ∈ R. (18)

There exists a unique solution with limt→∞ x(t) = 0 if and only if

x0 = −
∫ ∞
0

fi (t
′)e−

∫ t′
0 a dt ′ in (18). (19)

Moreover, if (19) holds, then the solution to (17)-(18) is given by

x(t) = −
∫ ∞
t

f (t ′)e−
∫ t′
t a, dτ ′. (20)



Sketch Proof of the Choice Theorem

1. Let (σ, ξ) := Ψ(σ(0), ξ(0)). By assumption, (σ(0), ξ(0)) satisfies

the decay estimate∣∣∣σ̇(0)(τ)
∣∣∣ ≤ c0δ 〈τ〉−2 , τ ≥ 0,∥∥∥ξ(0)(τ)
∥∥∥
s
≤ δ 〈τ〉−2 , τ ≥ 0.

We want to show the same for (σ, ξ).The key is to check the decay

conditions for ξ. Then the decay of σ̇ follows from the modulation

equation.



2. Let P(m,n)(τ) be the projection onto the span of the

zero-unstable modes span
{

Σ(m,n)(i ,j ,l)(a(0)(τ))
}

of L(a(0)(τ)), and

write ξ(m,n) := P(m,n)ξ. Let Q := 1−
∑

P(m,n) and write

ξS = Qξ = ξ −
∑
ξ(m,n) (=stable projection w.r.t. L(a(0))).

Due to the modulation equation, we know

ξ(m,n) = 0 for (m, n) = (0, 0), (0, 1), (1, 1).

Now we expand

ξ = ξS +
∑

m=1,2

ξ(m,0),

and plug this expansion into the graphical RMCF for ξ:

ξ̇ = −L(a(0))ξ − N(a(0), ξ(0))− ∂σW (σ(0))σ̇.



Using the orthogonality among various eigenfunctions of the

self-adjoint operator L(a(0)(τ)) in the space X s(a(0)(τ)), s ≥ 2, we

get the following system:

ξ̇S − QL(a(0))ξS = −QN(a(0), ξ(0)), (21)

β̇i − a(0)βi = fi , (22)

γ̇ij = hij , (23)

where

fi =−
〈
N(a(0), ξ(0)), Σ(1,0)(i ,0,0)(a(0))

〉
a(0)

, (24)

hij =−
〈
N(a(0), ξ(0)), Σ(2,0)(i ,j ,0)(a(0))

〉
a(0)

. (25)



The initial configurations associated to (21)-(23) are resp. the

three terms in the initial condition for ξ:

ξ(0) = η0 + βiΣ
(1,0)(i ,0,0)(a0) + γijΣ

(2,0),(i ,j ,0)(a0) (ICξ)

Since (21)-(23) are already decoupled, in what follows we consider

the Cauchy problem for ξS , βi , γij separately.

First, for the equation (21) for the stable part ξS , we can use

standard propagator estimate to show that

‖ξS(τ)‖s ≤ δe
−cτ , τ ≥ 0, (26)

where c is an absolute constant.



Next, applying the ODE Lemma to the equation for β

β̇i − a(0)βi = fi ,

we find that limτ→∞ βi (τ) = 0 if and only if the initial

configuration is given by

βi (0) = −
∫ ∞
0

fi (τ
′)λ(τ ′)−1 dτ ′

(
λ(τ) = e

∫ τ
0 a(τ ′) dτ ′

)
. (27)

This integral indeed converges, since λ(τ) ≥ 1, and some nonlinear

estimate that shows |fi (τ)| . 〈τ〉−4 .



Choose βi (0) as in (27). Then βi (τ) is given by the ODE Lemma:

βi (τ) = −
∫ ∞
τ

f (τ ′)
λ(τ)

λ(τ ′)
dτ ′. (28)

For all τ ≥ 0, this function satisfies

|βi (τ)| ≤
∫ ∞
τ

∣∣fi (τ ′)∣∣ e− ∫ τ ′
τ a dτ ′

≤
∫ ∞
τ

∣∣fi (τ ′)∣∣ dτ ′
≤ Cδ2 〈τ〉−3 .

(29)

Here the last inequality follows from |fi | . δ2 〈τ〉−4 , due to some

nonlinear estimate as before.



We conclude from (29) that

|βi (0)| . δ2. (30)

This gives quadratic estimate (15).

By (29) and some technical interpolation inequalities, we conclude∥∥∥P(1,0)ξ(τ)
∥∥∥
s
≤ δ 〈τ〉−2 , (31)

provided δ is sufficiently small.Using the exact same argument we

can determine the unique numbers γij(η) = O(δ2) that make∥∥∥P(2,0)ξ(τ)
∥∥∥
s
≤ δ 〈τ〉−2 . (32)

This proves the Choice Theorem.



Thanks for your attention


