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Set up

Consider the mean curvature flow (MCF) for a family of

hypersurfaces given by immersions
X(t) RTAX R S RFL 0<t< T,

satisfying
0t X = —H(X)v(X). (MCF)

We are interested in the dynamical behaviour of a solution X to
(MCF), which first develops a singularity at 0 € R™1 t = T > 0.



Rescaling

We consider the following time-dependent rescaling for a solution
X(-, t) : RI7k x REFL 5 R to (MCF) as follows:
X(x,w,t) = A(t) g(t) Y(y(x,t),w, 7 )+ ¢(t), (R)
~~

> = 3~
€R~o €0(n+1) cRn—k €R>o R+

Here, the immersion Y is defined through this relation, and

a(t) € Rog, A(t) = <2/tTa(t’) dt'> "

t

X = *lx T = )2 !
Y1) == A0 x, (1) /0 A(t) 2 de



Remarks. Consider X(g,(,a,Y) = A(a)gY(y,w,7) + ¢ in (R).

1. XA = A(t) is uniquely determined by the function a = a(t) > 0.
Indeed, this X is the unique solution to the Cauchy problem
AOeA = —a, \(T) =0.

2. The terminal condition on A ensures that the rescaling (R)
gives rise to a tangent flow Y = Y(y,w,7) in the microscopic
variable y = A~1x and slow time variable 7 = [* A\~2(t') dt’.

3. We view (g, (, a) in the rescaling (R) as an unknown a path in

(g,¢,a) € X:=O(n+1) x R"™ x Ryo.



Rescaled MCF

Plugging (R) into (MCF), we find that X = X(g,(, a, Y) solves
the MCF if and only if the quadruple (g,(, a, Y) solves

Y =—H(Y)(Y)—aly,V,) Y+aY—glo.gY —\"1g 10.C.

Call this the rescaled mean curvature flow.

Stationary solutions (cylinders in R"T1):

Yoy, = <y, \/70w> , 1)

(8:¢;a) = (80,60, 20) € X. (2)



Graphical equations

We seek maximal solution X to MCF on R77% x Sk x Ro<;~7 of
the form (c.f. (R))

a(t)

normal perturbation of the stationary sol. to RMCF

X@Mﬁ%=Mﬂdﬂ<ﬂ&ﬂv< “+5wuwaﬁwa>+«n

Here and below, we write X of this form as X = X(o,£), where
1. 0 =(g,(,a) is a path of symmetry.

2. £:RITF x RET x Ryz0 — R is a small (normal)

perturbation.



Configuration spaces

For s > 0,a > 0, define the Gaussian weighted Sobolev space

2
X(a) == H(ROT* x SK.R; pa),  pai=e W 2dp. (3)

Here dy. is the canonical measure on R"~% x Sk.
For s <r,0< b < a, clearly, X"(b) C X*(a).

Huisken's F-functional:

Fi(v) = Lpa dus, S:= {(y, v(y,w)w) 1 v : R}’}*k % Ri()+1 N ]R}.
(4)

This is C? on X*(a) with a > 0, s > 2 (assume this from now on).



Lemma (Implied Equation)

X = X(0,&) solves the MCF if and only if (0,&) satisfy

SZ_F‘;(\/k/a_'_g)_aaW(U)o.-v (5)
Here,
F.(v) is the X°(a)-gradient of F, at v,

W: X0 Vk/at gnkijwy + (z, )\_lw> € X*(a).

Proof.
Direct computation by plugging X = X(0,§) into the RMCF. [

Below we call (5) the graphical RMCF.



Main Theorem: Set up

Let X*(a), s > 2, a > 0 be the Gaussian weighted Sobolev
space.There exists 0 < § < 1 s.th. the following holds: For every
ap > 1/2 + 20, there exists a linear subspace S C X*(ag) with

finite codimensions, an open set Bs C {||n]|xs < ¢}, and a map

d:BsNS — X°=X°(1/2), satisfying
[(n0)lIxs S Hﬁo”is (quadratic),

1®(n0) = ®(m)llxs S 0 llno —mllxs  (Lipshitz),

for every 1o, m € Bs NS, as well as the following properties:



Main Theorem: Global existence

For every g € Bs NS, there exists a global (i.e. 0 <7 < )
solution (0 = (g,(, a),&) to the graphical rescaled MCF

£ = —Fy(Vk/a+&) =0, W(o)s,
with initial configuration
lr=0 =m0 + ®(m0), lt=0 = (1+1,0, a0).

By Implied Equation Lemma, this gives rise to a maximal sol. to
MCF on R"% x Sk*1 x Rocye 1, namely X = X(o, &).



Main Theorem: Dissipative estimates

Here and below, we write
()= (142

The solution &(+,7) from the existence part is non-negative for all

7, and dissipates to zero, with the decay estimate
1€C,T)llxs <6 (T)72, 7>0. (6)

In fact, the choice of the open set Bs C {||n]|xs < d} ensures
&(-,7) > 0 for all 7, which guarantees embeddedness of X(o,£).



Remarks on the Main Theorem

1. By definition, up to a rigid motion, cylinders with radius
\/ k/ao correspond to the following stationary solution to the
graphic RMCF

o0 = (80, ¢0,a0), & =0.

2. By the Main Theorem, the set
M:={n+d(n):neSnBs}

forms a non-degenerate, finite codimensional stable manifold

for the graphic RMCF, parametrized by S C X*(ap).



Typical element in M



Stability of Cylindrical Singularities

» In [Ann. of Math. (2) 175 (2012)], Colding-Minicozzi showed

cylindrical singularities are F-unstable.

» In terms of the graphical RMCF, this means that the static

solution & = 0 is linearly unstable.

» By Main Theorem above, under a generic class of initial
perturbations, namely those in the finite-codimensional stable
manifold M, the static sol. &g is actually asymptotically
stable: a generic perturbation £ = &y + n + ®(n) dissipates to

& =0as 17— o0.



Recall F,: X*(a) — R (Huisken's F-functional) is a C? functional.
The linearized operator of F}(v) at the critical point v = \/k/a is

uﬁ:—Af+M%VA»—ZAw—%.

Here a > 0 corresponds to the cylindrical radius. From now on we

write the graphical RMCF as

5=—H¢Uﬁf—@W@&
=~ L(a)¢ — N(a,€) — 0, W(0)s.

Here N(a, &) := Fl(\/k/a+ &) — L(a)¢ is the nonlinearity.



Linearized operator

The fact that cylinders are F-unstable has to do with the linearized
operator at the cylinder.

Lemma (Colding-Minicozzi)

The linearized operator

ZAUJ —2a

L(a)=—-A,+aly, V,(-)) —
is self-adjoint in X*(a), and is bounded from X*(a) — X°72(a).
The spectrum of L(a) is purely discrete, and the only non-positive

eigenvalues, together with the associated eigenfuncitons, are



Zero-unstable modes of L(a)

Y

—2a, with eigenfunction £(®00.00)(5) .— _

—a, with eigenfunctions (OO0 (5) .= A=y,

. 1 .
—a, with eigenfunctions (0000 (5) .= Y
Hyl HO,a
0, with eigenfunctions XM (5) = i
. 1 o
0, with eigenfunctions £(29(4:0)(5) .= ————(ay'y’ — &;).
Hay,yj - 6ij||0,a

Remark. Some, but not all of the zero-unstable modes of the

linearized operator L(a) are due to broken symmetries.



Main ideas

» So far we have only one equation for &, whereas we are solving

for a pair of unknowns (o, &).

» Introduce an equation for o (the modulation equation) to
remove the effect of the symmetry zero-unstable modes.

» Incorporate certain zero-unstable modes into the solution (!)

to ensure dissipative estimates at 7 — oo.

The last point was first rigorously implemented in [J. Geom. Anal.
19 (2009)] by Zhou Gang and Sigal. Similar modulation method is
customary in the study of e.g. NLS soliton.



Modulation equations

Recall the following zero-unstable modes of linearized opr. L(a):
2 )
—a, with eigenfunctions 2(0,1)(0,0,/)(3) = \"lw,

—2a, with eigenfunction £(®000)(5) .— _

0, with eigenfunctions TXD00N(5) .= yig!,

For these X(™")(a) with (m, n) = (0,0),(0,1), (1,1), there exists a
path o(7) € L (the symmetry Lie group of MCF) s.th. we can

eliminate the distablizing effect of these modes.



Lemma (Modulation)

Suppose (0,€) is a global solution to the graphical RMCF s.th.

<§(0), Z(’"’”)(a(O))>a(0) =0 ({- ), = inn. prod. on X°(a))

for (m, n) = (0,0), (0, 1), (1, 1).

Then & satisfies the orthogonality condition for all subsequent times

(s(). 5 atr)) =0 720, (mon) = (0.0).(0.2).(1.1)

if and only if o = (g, z, a) satisfies the modulation equations:

0,0 = ﬁ(a)f + /\2(0,5),

for some explicit vector fields F , M.



Proof.
Differentiating both sides of the equation

(&(r), £ (a(r))) =0 (7)

ar)
w.r.t. 7, we find that (7) holds for all 7 > 0 if and only if
1. (7) holds for 7 = 0;
2. For 7 > 0, there holds

(&), £ma(r))) == (&), 0,2 (a(r)))

a(r) a(r)

(8)
The first point is in the assumption. Plugging the equation for &
(which involves 9, W (o)) into (8) , we get the equation for 6. [



Linear correction

The linear subspace S in the Main Theorem removes all the
zero-unstable modes of L(ag) from the configuration space X*(ap).
Hence, the codimension of S is the sum of the multipliciteis of all
the non-positive eigenvalues of L(ap), which equals to

(n—k)(n—k—|-3)'

codmS =n+2+ >

Hence, by the Modulation Lemma, if 79 € S and o solves the
modulation equation, then the flow £(t) generated by 7y remains
orthogonal to (™" (a), (m, n) = (0,0), (0,1),(1,1) for all 7 > 0.



Need of quadratic correction

The twist here is that not all of the zero-unstable modes of the
linearized operator L(a) can be eliminated by the modulation
method. Two classes of zero-unstable modes persist:

1

5(1,0)(1,0,0)
@ =1,

yi (EV = _a)a
1

5
lay’y! = ijllg

¥ (20)(1J:0) () .= (ay'y! — ;) (EV =0).
To eliminate these, we introduce the correction map ®. This is
quadratic in the sense that ||®(n)]|xs < HnHis forn € SN Bs.

As we will see, ®(n) incorporates certain unstable modes of L(ap).



Preliminaries for defining ®

In order to define ®, take a fixed path
(009, £0) e Lip(Rsg, £) x (C(R0, X*) N CH(Rx0, X°72)).

Consider the following system, obtained by freezing coefficients in

the graphical RMCF and the modulation equations at (o(?), £(9)):

€ = —L(a)e — N(@@, @) — 5, W (o), (LES)
& = F(o®)¢ + M(c®, ), (LEo)



To (LE)-(LEo) we associate the initial configurations

c0(0) = (1,0,a0) for some fixed ag > 1/2, (ICo)
£(0) = o + BECI00 (ag) + 4TI (a). (1CE)

Here 1o € Bs NS C X®(ap) is fixed, and 3;,7; € R are to be

chosen later as functions of 9. Recall that

2(170)(i7070)(a) = 1 i (EV = —a), (9)

2 Y
ly'115.2
. 1 -
y2000(a) = ——=——(ay'y/ — §;) (EV =0). (10)
Hay’yj - 5if“0,a

are the zero-unstable modes that persist modulation.



The solution map V¥

Consider the solution map

W (0 £0)) — the unique solution (o, €) to (LE€)-(1CE). (11)

» Using standard parabolic theory, one can show that this map
is well-defined.

» Hereafter we want to show that W is a contraction in a
suitable space of dissipating paths.

» Then the fixed point of W will be a dissipating solution to the
graphical RMCF.



Definition
Fix 0 < 0 < 1. The space As = A§ x .A§ consists of

(07‘5) € LiP(Rzo, Z) X (C(RZ(],XS) N C':I-(IRZ()7)<S—2))7

s.th. the following holds:
1. o(0) is as in (ICo), with ag > 3 + 26;

2. For some fixed ¢y > 0, there hold the decay estimates

l6(7)| < cd (1), 7>0, (12)
1€, <6(r)%, 7>0 (13)

3. Certain pivot condition (technical but easy to verify).



The contraction scheme

We want to show
1. W(As) C As;
2. V: As — Ags is a contraction w.r.t. a suitable norm on As.

Remark. Consider the initial configuration (1C¢).

The constants 3; and ;; are to be determined later as a function
of ng € BsN'S. Hence, the map W depends only on 7.

Indeed, if g = 0, then it is easy to see that the fixed point of
W(-,0) is just the vector (0,&) = (¢(0),0) in As. This corresponds
to the trivial static solution (=cylinder of radius \/%).



Definition (the quadratic correction @)

For np € Bs NS, define

®(no) = Bi(10) OO0 (ag) + ;(10) T 0 (), (14)

where f3;, ;i are some functions of 7, s.th. W = W(-, 1) has a
unique fixed point in As (c.f. the initial condition (IC&) for &).

Proof of the Main Theorem.
By construction of W, if it has fixed point in Ay, then this fixed
point is a global solution to the graphical RMCF dissipating to 0 in

X®-norm as 7 — 00. O



The heart of the matter is to show W(As) C Ajs. Given g, we
construct explicit numbers 3i(n0), 7ij(10) in the initial condition

(IC¢) that fulfills this mapping property.
Theorem (Choice of 3, )

For every ng € Bs NS and every fixed path (0(0), 5(0)) € As, there
exist unique coefficients 3;, vy;;, depending on the choice of
a(©, £0©) only, s.th. the solution to (LEE)-(1CE) lies in As.

Moreover, there hold the quadratic estimates

A

62, (15)

N

(0,6
( 52. (16)

"Wj(a(o),é



Lemma (mechanism for choosing 3 and )

Fix two functions a(t) > 0 and f € L}(R>q,R).Consider the
Cauchy problem for x : R>q — R:

x—a(t)x = f, (17)
x(0) = xo € R. (18)

There exists a unique solution with lims_, x(t) = 0 if and only if
o0 ¢
Xp = —/ fi(t)e Jo 2 dt’ in (18). (19)
0
Moreover, if (19) holds, then the solution to (17)-(18) is given by

x(t) = — /t T )e Ko gr. (20)



Sketch Proof of the Choice Theorem

1. Let (0,€) := V(0@ £©). By assumption, (¢(9), £(0) satisfies

the decay estimate
60| < i (r) 2, 720,

[¢@)

§5<T>72, T>0.

s

We want to show the same for (0,&).The key is to check the decay
conditions for £. Then the decay of ¢ follows from the modulation

equation.



2. Let P(Mn)(7) be the projection onto the span of the
zero-unstable modes span {Z(mN(iJ:)(20)(7))} of L(a(%)(7)), and
write £(mn) .= P(mne et Q :=1— 3 P(™") and write

£s = Q€ =& — S &lmn) (=stable projection w.r.t. L(a(®))).

Due to the modulation equation, we know
¢lmn) = 0 for (m, n) = (0,0),(0,1),(1,1).

Now we expand

E=¢s+ ), ¢,

m=1,2

and plug this expansion into the graphical RMCF for &:

£ =—1(a)¢ - N, £0) — 9, W ()5



Using the orthogonality among various eigenfunctions of the
self-adjoint operator L(a(®)(7)) in the space X*(a(®)(7)), s > 2, we

get the following system:

és — QL(a)es — —QN(a®, ), (21)
Bi— a8 = £, (22)
Vi = hij, (23)
where
= (NE,®), Z090000)) (24)
by — <N(a(o)’€(o))7 2(270)(iJ70)(3(0))>3(0) (25)



The initial configurations associated to (21)-(23) are resp. the

three terms in the initial condition for ¢:
£(0) = no + BEMIUO (30) 4 4;F RO (29) - (IC)

Since (21)-(23) are already decoupled, in what follows we consider
the Cauchy problem for {s, f3;, i separately.
First, for the equation (21) for the stable part £s, we can use

standard propagator estimate to show that
1€s(T)lls < 0”7, 7 >0, (26)

where ¢ is an absolute constant.



Next, applying the ODE Lemma to the equation for 3
B —a0p; = £,

we find that lim; o 8;(7) = 0 if and only if the initial
configuration is given by
5:(0) = - / AN dr (M) = e ) (1)
0

This integral indeed converges, since A(7) > 1, and some nonlinear

estimate that shows |f;(7)| < <T>74-



Choose 3;(0) as in (27). Then §;(7) is given by the ODE Lemma:

(7)) = — (' " 2
B(n) == [ )3 o (28)
For all 7 > 0, this function satisfies

18:(7)] g/m\ﬁ(Tf)|e—f:’adT,

< 1) e (29
< Co% (r)3.

Here the last inequality follows from |f;| < 62 (7)™*, due to some

nonlinear estimate as before.



We conclude from (29) that
18i(0)| < 8% (30)

This gives quadratic estimate (15).

By (29) and some technical interpolation inequalities, we conclude

[P <o, (31)

s

provided ¢ is sufficiently small.Using the exact same argument we

can determine the unique numbers ;;(n) = O(62) that make

|PeOe(n)| <a(n). (32)

S

This proves the Choice Theorem. []



Thanks for your attention



