Asymptotic Stability of Cylindrical Singularities

Jingxuan Zhang

University of Copenhagen

March 7, 2022

Set up

Consider the mean curvature flow (MCF) for a family of hypersurfaces given by immersions

$$X(\cdot,t): \mathbb{R}^{n-k} \times \mathbb{R}^{k+1} \to \mathbb{R}^{n+1}, \quad 0 \le t < T,$$

satisfying

$$\partial_t X = -H(X)\nu(X).$$
 (MCF)

We are interested in the dynamical behaviour of a solution X to (MCF), which first develops a singularity at $0 \in \mathbb{R}^{n+1}$, t = T > 0.

Rescaling

We consider the following time-dependent rescaling for a solution $X(\cdot, t) : \mathbb{R}^{n-k}_{x} \times \mathbb{R}^{k+1}_{\omega} \to \mathbb{R}^{n+1}$ to (MCF) as follows:

$$X(x,\omega,t) = \underbrace{\lambda(t)}_{\in \mathbb{R}_{>0}} \underbrace{g(t)}_{\in O(n+1)} Y(\underbrace{y(x,t)}_{\in \mathbb{R}^{n-k}}, \omega, \underbrace{\tau}_{\in \mathbb{R}_{\geq 0}}) + \underbrace{\zeta(t)}_{\in \mathbb{R}^{n+1}}, \quad (\mathsf{R})$$

Here, the immersion Y is defined through this relation, and

$$egin{aligned} & \mathsf{a}(t)\in\mathbb{R}_{>0},\quad\lambda(t):=\left(2\int_t^T\mathsf{a}(t')\,dt'
ight)^{1/2},\ & y(x,t):=\lambda(t)^{-1}x,\quad au(t):=\int_0^t\lambda(t')^{-2}\,dt'. \end{aligned}$$

Remarks. Consider $X(g, \zeta, a, Y) = \lambda(a)gY(y, \omega, \tau) + \zeta$ in (R).

- 1. $\lambda = \lambda(t)$ is uniquely determined by the function a = a(t) > 0. Indeed, this λ is the unique solution to the Cauchy problem $\lambda \partial_t \lambda = -a, \lambda(T) = 0.$
- 2. The terminal condition on λ ensures that the rescaling (R) gives rise to a tangent flow $Y = Y(y, \omega, \tau)$ in the microscopic variable $y = \lambda^{-1}x$ and slow time variable $\tau = \int^t \lambda^{-2}(t') dt'$.

3. We view (g, ζ, a) in the rescaling (R) as an unknown a path in

$$(g,\zeta,a)\in\Sigma:=O(n+1) imes\mathbb{R}^{n+1} imes\mathbb{R}_{>0}.$$

Rescaled MCF

Plugging (R) into (MCF), we find that $X = X(g, \zeta, a, Y)$ solves the MCF if and only if the quadruple (g, ζ, a, Y) solves

$$\partial_{\tau}Y = -H(Y)\nu(Y) - a\langle y, \nabla_y \rangle Y + aY - g^{-1}\partial_{\tau}gY - \lambda^{-1}g^{-1}\partial_{\tau}\zeta.$$

Call this the rescaled mean curvature flow. Stationary solutions (cylinders in \mathbb{R}^{n+1}):

$$Y \equiv Y_{a_0} := \left(y, \sqrt{\frac{k}{a_0}}\omega\right), \tag{1}$$
$$(g, \zeta, a) \equiv (g_0, \zeta_0, a_0) \in \Sigma. \tag{2}$$

Graphical equations

We seek maximal solution X to MCF on $\mathbb{R}^{n-k}_{x} \times \mathbb{S}^{k}_{\omega} \times \mathbb{R}_{0 \leq t < T}$ of the form (c.f. (R))

$$X(x,\omega,t) = \lambda(t)g(t)\underbrace{\left(y(x,t), \left(\sqrt{\frac{k}{a(t)}} + \xi(y(x,t),\omega,\tau(t))\right)\omega\right)}_{+\zeta(t)} + \zeta(t)$$

normal perturbation of the stationary sol. to RMCF

Here and below, we write X of this form as $X = X(\sigma, \xi)$, where

- 1. $\sigma \equiv (g, \zeta, a)$ is a path of symmetry.
- 2. $\xi : \mathbb{R}_{y}^{n-k} \times \mathbb{R}_{\omega}^{k+1} \times \mathbb{R}_{\tau \geq 0} \to \mathbb{R}$ is a small (normal) perturbation.

Configuration spaces

For $s \ge 0, a > 0$, define the Gaussian weighted Sobolev space

$$X^{s}(a) := H^{s}(\mathbb{R}^{n-k}_{y} \times \mathbb{S}^{k}_{\omega}, \mathbb{R}; \rho_{a}), \quad \rho_{a} := e^{-a|y|^{2}/2} d\mu.$$
(3)

Here $d\mu$ is the canonical measure on $\mathbb{R}^{n-k} \times \mathbb{S}^k$. For $s \leq r$, $0 < b \leq a$, clearly, $X^r(b) \subset X^s(a)$. Huisken's F-functional:

$$F_{a}(v) := \int_{S} \rho_{a} d\mu_{S}, \quad S := \left\{ (y, v(y, \omega)\omega) : v : \mathbb{R}_{y}^{n-k} \times \mathbb{R}_{\omega}^{k+1} \to \mathbb{R} \right\}.$$
(4)
This is C^{2} on $X^{s}(a)$ with $a > 0, s \ge 2$ (assume this from now on).

Lemma (Implied Equation)

 $X = X(\sigma, \xi)$ solves the MCF if and only if (σ, ξ) satisfy

$$\dot{\xi} = -F'_{a}(\sqrt{k/a} + \xi) - \partial_{\sigma}W(\sigma)\dot{\sigma}, \qquad (5)$$

Here,

$$F'_{a}(v)$$
 is the $X^{0}(a)$ -gradient of F_{a} at v ,
 $W: \Sigma \ni \sigma \mapsto \sqrt{k/a} + g_{n-k+l,j}\omega^{l}y^{j} + \langle z, \lambda^{-1}\omega \rangle \in X^{s}(a).$

Proof.

Direct computation by plugging $X = X(\sigma, \xi)$ into the RMCF. Below we call (5) the graphical RMCF.

Main Theorem: Set up

Let $X^{s}(a)$, $s \geq 2$, a > 0 be the Gaussian weighted Sobolev space. There exists $0 < \delta \ll 1$ s.th. the following holds: For every $a_{0} \geq 1/2 + 2\delta$, there exists a linear subspace $S \subset X^{s}(a_{0})$ with finite codimensions, an open set $\mathcal{B}_{\delta} \subset \{ \|\eta\|_{X^{s}} < \delta \}$, and a map

$$\begin{split} \Phi : \mathcal{B}_{\delta} \cap \mathcal{S} \to X^{s} \equiv X^{s}(1/2), \quad \text{satisfying} \\ \|\Phi(\eta_{0})\|_{X^{s}} \lesssim \|\eta_{0}\|_{X^{s}}^{2} \quad (\text{quadratic}), \\ \|\Phi(\eta_{0}) - \Phi(\eta_{1})\|_{X^{s}} \lesssim \delta \|\eta_{0} - \eta_{1}\|_{X^{s}} \quad (\text{Lipshitz}), \end{split}$$

for every $\eta_0, \eta_1 \in \mathcal{B}_{\delta} \cap \mathcal{S}$, as well as the following properties:

Main Theorem: Global existence

For every $\eta_0 \in \mathcal{B}_{\delta} \cap \mathcal{S}$, there exists a global (i.e. $0 \leq \tau < \infty$) solution ($\sigma = (g, \zeta, a), \xi$) to the graphical rescaled MCF

$$\dot{\xi} = -F'_{a}(\sqrt{k/a}+\xi) - \partial_{\sigma}W(\sigma)\dot{\sigma},$$

with initial configuration

$$\xi|_{\tau=0} = \eta_0 + \Phi(\eta_0), \quad \sigma|_{t=0} = (\mathbf{1}_{n+1}, 0, a_0).$$

By Implied Equation Lemma, this gives rise to a maximal sol. to MCF on $\mathbb{R}^{n-k} \times \mathbb{S}^{k+1} \times \mathbb{R}_{0 \le t < T}$, namely $X = X(\sigma, \xi)$.

Main Theorem: Dissipative estimates

Here and below, we write

$$\langle \cdot
angle := (1 + |\cdot|^2)^{1/2}.$$

The solution $\xi(\cdot, \tau)$ from the existence part is non-negative for all τ , and dissipates to zero, with the decay estimate

$$\|\xi(\cdot,\tau)\|_{X^s} \le \delta \langle \tau \rangle^{-2}, \quad \tau \ge 0.$$
(6)

In fact, the choice of the open set $\mathcal{B}_{\delta} \subset \{ \|\eta\|_{X^{s}} < \delta \}$ ensures $\xi(\cdot, \tau) \geq 0$ for all τ , which guarantees embeddedness of $X(\sigma, \xi)$.

Remarks on the Main Theorem

1. By definition, up to a rigid motion, cylinders with radius $\sqrt{k/a_0}$ correspond to the following stationary solution to the graphic RMCF

$$\sigma_0 \equiv (g_0, \zeta_0, a_0), \quad \xi_0 \equiv 0.$$

2. By the Main Theorem, the set

$$M := \{\eta + \Phi(\eta) : \eta \in S \cap \mathcal{B}_{\delta}\}$$

forms a non-degenerate, finite codimensional stable manifold for the graphic RMCF, parametrized by $S \subset X^{s}(a_{0})$. Typical element in M

Stability of Cylindrical Singularities

- In [Ann. of Math. (2) 175 (2012)], Colding-Minicozzi showed cylindrical singularities are *F*-unstable.
- ► In terms of the graphical RMCF, this means that the static solution $\xi_0 \equiv 0$ is *linearly unstable*.
- By Main Theorem above, under a generic class of initial perturbations, namely those in the finite-codimensional stable manifold *M*, the static sol. ξ₀ is actually *asymptotically* stable: a generic perturbation ξ = ξ₀ + η + Φ(η) dissipates to ξ₀ = 0 as τ → ∞.

Recall $F_a : X^s(a) \to \mathbb{R}$ (Huisken's *F*-functional) is a C^2 functional. The linearized operator of $F'_a(v)$ at the critical point $v \equiv \sqrt{k/a}$ is

$$L(a) = -\Delta_y + a \langle y, \nabla_y(\cdot) \rangle - rac{a}{k} \Delta_\omega - 2a.$$

Here a > 0 corresponds to the cylindrical radius. From now on we write the graphical RMCF as

$$\dot{\xi} = -F'_{\mathsf{a}}(\sqrt{k/a}+\xi) - \partial_{\sigma}W(\sigma)\dot{\sigma}$$

= $-L(\mathfrak{a})\xi - N(\mathfrak{a},\xi) - \partial_{\sigma}W(\sigma)\dot{\sigma}.$

Here $N(a,\xi) := F'_a(\sqrt{k/a} + \xi) - L(a)\xi$ is the nonlinearity.

Linearized operator

The fact that cylinders are F-unstable has to do with the linearized operator at the cylinder.

Lemma (Colding-Minicozzi)

The linearized operator

$$L(a) = -\Delta_y + a \langle y, \nabla_y(\cdot)
angle - rac{a}{k} \Delta_\omega - 2a$$

is self-adjoint in $X^{s}(a)$, and is bounded from $X^{s}(a) \rightarrow X^{s-2}(a)$. The spectrum of L(a) is purely discrete, and the only non-positive eigenvalues, together with the associated eigenfuncitons, are

Zero-unstable modes of L(a)

$$-2a, \quad ext{with eigenfunction } \Sigma^{(0,0)(0,0,0)}(a):=-rac{\sqrt{k}}{2}a^{-3/2},$$

- $-a, \quad ext{with eigenfunctions } \Sigma^{(0,1)(0,0,l)}(a) := \lambda^{-1} \omega,$
- $-a, \quad ext{with eigenfunctions } \Sigma^{(1,0)(i,0,0)}(a) := rac{1}{\left\|y^i
 ight\|_{0,a}^2}y^i,$

 $0, \quad \text{with eigenfunctions } \Sigma^{(1,1)(i,0,l)}(\textbf{\textit{a}}) := y^i \omega^l,$

0, with eigenfunctions
$$\Sigma^{(2,0)(i,j,0)}(a) := rac{1}{\|ay^iy^j - \delta_{ij}\|_{0,a}^2}(ay^iy^j - \delta_{ij}).$$

Remark. Some, but not all of the zero-unstable modes of the linearized operator L(a) are due to broken symmetries.

Main ideas

- So far we have only one equation for ξ, whereas we are solving for a pair of unknowns (σ, ξ).
- Introduce an equation for σ (the modulation equation) to remove the effect of the symmetry zero-unstable modes.
- Incorporate certain zero-unstable modes into the solution (!) to ensure dissipative estimates at τ → ∞.

The last point was first rigorously implemented in [J. Geom. Anal. 19 (2009)] by Zhou Gang and Sigal. Similar modulation method is customary in the study of e.g. NLS soliton.

Modulation equations

Recall the following zero-unstable modes of linearized opr. L(a):

-2a, with eigenfunction
$$\Sigma^{(0,0)(0,0,0)}(a) := -\frac{\sqrt{k}}{2}a^{-3/2}$$
,
-a, with eigenfunctions $\Sigma^{(0,1)(0,0,l)}(a) := \lambda^{-1}\omega$,
0, with eigenfunctions $\Sigma^{(1,1)(i,0,l)}(a) := y^i \omega^l$,

For these $\Sigma^{(m,n)}(a)$ with (m,n) = (0,0), (0,1), (1,1), there exists a path $\sigma(\tau) \in \Sigma$ (the symmetry Lie group of MCF) s.th. we can eliminate the distablizing effect of these modes.

Lemma (Modulation)

Suppose (σ, ξ) is a global solution to the graphical RMCF s.th.

$$\left\langle \xi(0),\, \Sigma^{(m,n)}(a(0))
ight
angle_{a(0)} = 0 \quad \left(\left\langle \cdot,\, \cdot
ight
angle_{a} = \mathit{inn. prod. on} \; X^{0}(a)
ight)$$

for (m, n) = (0, 0), (0, 1), (1, 1).

Then ξ satisfies the orthogonality condition for all subsequent times

$$\left\langle \xi(\tau), \, \Sigma^{(m,n)}(a(\tau)) \right\rangle_{a(\tau)} = 0, \quad \tau \ge 0, \, (m,n) = (0,0), (0,1), (1,1),$$

if and only if $\sigma = (g, z, a)$ satisfies the modulation equations:

$$\partial_{\tau}\sigma = \vec{F}(\sigma)\xi + \vec{M}(\sigma,\xi),$$

for some explicit vector fields \vec{F} , \vec{M} .

Proof.

Differentiating both sides of the equation

$$\left\langle \xi(\tau), \, \Sigma^{(m,n)}(a(\tau)) \right\rangle_{a(\tau)} = 0$$
(7)

w.r.t. au, we find that (7) holds for all $au \geq 0$ if and only if

- 1. (7) holds for $\tau = 0$;
- 2. For $\tau > 0$, there holds

$$\left\langle \dot{\xi}(\tau), \, \Sigma^{(m,n)}(\boldsymbol{a}(\tau)) \right\rangle_{\boldsymbol{a}(\tau)} = -\left\langle \xi(\tau), \, \partial_{\tau} \Sigma^{(m,n)}(\boldsymbol{a}(\tau)) \right\rangle_{\boldsymbol{a}(\tau)}.$$
(8)

The first point is in the assumption. Plugging the equation for $\dot{\xi}$ (which involves $\partial_{\sigma} W(\sigma) \dot{\sigma}$) into (8), we get the equation for $\dot{\sigma}$.

Linear correction

The linear subspace S in the Main Theorem removes all the zero-unstable modes of $L(a_0)$ from the configuration space $X^s(a_0)$. Hence, the codimension of S is the sum of the multipliciteis of all the non-positive eigenvalues of $L(a_0)$, which equals to

$$\operatorname{codim} \mathcal{S} = n+2+rac{(n-k)(n-k+3)}{2}.$$

Hence, by the Modulation Lemma, if $\eta_0 \in S$ and σ solves the modulation equation, then the flow $\xi(t)$ generated by η_0 remains orthogonal to $\Sigma^{(m,n)}(a)$, (m,n) = (0,0), (0,1), (1,1) for all $\tau \geq 0$.

Need of quadratic correction

The twist here is that not all of the zero-unstable modes of the linearized operator L(a) can be eliminated by the modulation method. Two classes of zero-unstable modes persist:

$$\begin{split} \Sigma^{(1,0)(i,0,0)}(a) &:= \frac{1}{\|y^i\|_{0,a}^2} y^i \quad (EV = -a), \\ \Sigma^{(2,0)(i,j,0)}(a) &:= \frac{1}{\|ay^i y^j - \delta_{ij}\|_{0,a}^2} (ay^i y^j - \delta_{ij}) \quad (EV = 0). \end{split}$$

To eliminate these, we introduce the correction map Φ . This is quadratic in the sense that $\|\Phi(\eta)\|_{X^s} \lesssim \|\eta\|_{X^s}^2$ for $\eta \in S \cap \mathcal{B}_{\delta}$. As we will see, $\Phi(\eta)$ incorporates certain unstable modes of $L(a_0)$.

Preliminaries for defining Φ

In order to define Φ , take a fixed path

$$(\sigma^{(0)},\xi^{(0)})\in Lip(\mathbb{R}_{\geq 0},\Sigma) imes (C(\mathbb{R}_{\geq 0},X^s)\cap C^1(\mathbb{R}_{\geq 0},X^{s-2})).$$

Consider the following system, obtained by freezing coefficients in the graphical RMCF and the modulation equations at $(\sigma^{(0)}, \xi^{(0)})$:

$$\dot{\xi} = -L(a^{(0)})\xi - N(a^{(0)}, \xi^{(0)}) - \partial_{\sigma}W(\sigma^{(0)})\dot{\sigma}, \qquad (\mathsf{LE}\xi)$$
$$\dot{\sigma} = \vec{F}(\sigma^{(0)})\xi + \vec{M}(\sigma^{(0)}, \xi^{(0)}), \qquad (\mathsf{LE}\sigma)$$

To $(LE\xi)$ - $(LE\sigma)$ we associate the initial configurations

$$\begin{aligned} \sigma(0) &= (\mathbf{1}, 0, a_0) & \text{for some fixed } a_0 > 1/2, \\ \xi(0) &= \eta_0 + \beta_i \Sigma^{(1,0)(i,0,0)}(a_0) + \gamma_{ij} \Sigma^{(2,0),(i,j,0)}(a_0). \end{aligned} \tag{ICξ}$$

Here $\eta_0 \in \mathcal{B}_{\delta} \cap \mathcal{S} \subset X^s(a_0)$ is fixed, and $\beta_i, \gamma_{ij} \in \mathbb{R}$ are to be chosen later as functions of η_0 . Recall that

$$\Sigma^{(1,0)(i,0,0)}(a) := \frac{1}{\|y^i\|_{0,a}^2} y^i \quad (EV = -a),$$

$$\Sigma^{(2,0)(i,j,0)}(a) := \frac{1}{\|ay^i y^j - \delta_{ij}\|_{0,a}^2} (ay^i y^j - \delta_{ij}) \quad (EV = 0).$$
(10)

are the zero-unstable modes that persist modulation.

The solution map Ψ

Consider the solution map

- $\Psi: (\sigma^{(0)}, \xi^{(0)}) \mapsto$ the unique solution (σ, ξ) to $(\mathsf{LE}\xi)$ - $(\mathsf{IC}\xi)$. (11)
- Using standard parabolic theory, one can show that this map is well-defined.
- Hereafter we want to show that Ψ is a contraction in a suitable space of dissipating paths.
- Then the fixed point of Ψ will be a dissipating solution to the graphical RMCF.

Definition

Fix $0 < \delta \ll 1$. The space $\mathcal{A}_{\delta} = \mathcal{A}_{\delta}^{\sigma} \times \mathcal{A}_{\delta}^{\xi}$ consists of

 $(\sigma,\xi)\in Lip(\mathbb{R}_{\geq 0},\Sigma)\times (C(\mathbb{R}_{\geq 0},X^s)\cap C^1(\mathbb{R}_{\geq 0},X^{s-2})),$

s.th. the following holds:

1. $\sigma(0)$ is as in (IC σ), with $a_0 \geq \frac{1}{2} + 2\delta$;

2. For some fixed $c_0 > 0$, there hold the decay estimates

$$|\dot{\sigma}(\tau)| \le c_0 \delta \langle \tau \rangle^{-2}, \quad \tau \ge 0,$$
 (12)

$$\|\xi(\tau)\|_{s} \leq \delta \langle \tau \rangle^{-2}, \quad \tau \geq 0;$$
(13)

3. Certain pivot condition (technical but easy to verify).

The contraction scheme

We want to show

1. $\Psi(\mathcal{A}_{\delta}) \subset \mathcal{A}_{\delta};$

2. $\Psi : \mathcal{A}_{\delta} \to \mathcal{A}_{\delta}$ is a contraction w.r.t. a suitable norm on \mathcal{A}_{δ} . *Remark.* Consider the initial configuration (IC ξ). The constants β_i and γ_{ij} are to be determined later as a function of $\eta_0 \in \mathcal{B}_{\delta} \cap \mathcal{S}$. Hence, the map Ψ depends only on η_0 . Indeed, if $\eta_0 = 0$, then it is easy to see that the fixed point of $\Psi(\cdot, 0)$ is just the vector $(\sigma, \xi) \equiv (\sigma(0), 0)$ in \mathcal{A}_{δ} . This corresponds to the trivial static solution (=cylinder of radius $\sqrt{k/a_0}$).

Definition (the quadratic correction Φ)

For $\eta_0 \in \mathcal{B}_{\delta} \cap \mathcal{S}$, define

$$\Phi(\eta_0) := \beta_i(\eta_0) \Sigma^{(1,0)(i,0,0)}(a_0) + \gamma_{ij}(\eta_0) \Sigma^{(2,0),(i,j,0)}(a_0), \quad (14)$$

where β_i , γ_{ij} are some functions of η_0 , s.th. $\Psi = \Psi(\cdot, \eta_0)$ has a unique fixed point in \mathcal{A}_{δ} (c.f. the initial condition (IC ξ) for ξ).

Proof of the Main Theorem.

By construction of Ψ , if it has fixed point in \mathcal{A}_{δ} , then this fixed point is a global solution to the graphical RMCF dissipating to 0 in X^{s} -norm as $\tau \to \infty$. The heart of the matter is to show $\Psi(\mathcal{A}_{\delta}) \subset \mathcal{A}_{\delta}$. Given η_0 , we construct explicit numbers $\beta_i(\eta_0)$, $\gamma_{ij}(\eta_0)$ in the initial condition (IC ξ) that fulfills this mapping property.

Theorem (Choice of β , γ)

For every $\eta_0 \in \mathcal{B}_{\delta} \cap S$ and every fixed path $(\sigma^{(0)}, \xi^{(0)}) \in \mathcal{A}_{\delta}$, there exist unique coefficients β_i , γ_{ij} , depending on the choice of $\sigma^{(0)}, \xi^{(0)}$ only, s.th. the solution to $(LE\xi)$ - $(IC\xi)$ lies in \mathcal{A}_{δ} . Moreover, there hold the quadratic estimates

$$\begin{aligned} \left| \beta_i(\sigma^{(0)}, \xi^{(0)}) \right| \lesssim \delta^2, \tag{15} \\ \left| \gamma_{ij}(\sigma^{(0)}, \xi^{(0)}) \right| \lesssim \delta^2. \tag{16} \end{aligned}$$

Lemma (mechanism for choosing β and γ)

Fix two functions $a(t) \ge 0$ and $f \in L^1(\mathbb{R}_{\ge 0}, \mathbb{R})$. Consider the Cauchy problem for $x : \mathbb{R}_{\ge 0} \to \mathbb{R}$:

$$\dot{x} - a(t)x = f, \tag{17}$$

$$x(0) = x_0 \in \mathbb{R}.$$
 (18)

There exists a unique solution with $\lim_{t\to\infty} x(t) = 0$ if and only if

$$x_0 = -\int_0^\infty f_i(t') e^{-\int_0^{t'} a} dt' \text{ in (18).}$$
 (19)

Moreover, if (19) holds, then the solution to (17)-(18) is given by

$$x(t) = -\int_{t}^{\infty} f(t') e^{-\int_{t}^{t'} a}, \, d\tau'.$$
 (20)

Sketch Proof of the Choice Theorem

1. Let $(\sigma,\xi) := \Psi(\sigma^{(0)},\xi^{(0)})$. By assumption, $(\sigma^{(0)},\xi^{(0)})$ satisfies the decay estimate

$$ig|\dot{\sigma}^{(0)}(au)ig|\leq c_0\delta\,\langle au
angle^{-2}\,,\quad au\geq 0, \ \left\|\xi^{(0)}(au)
ight\|_s\leq\delta\,\langle au
angle^{-2}\,,\quad au\geq 0.$$

We want to show the same for (σ, ξ) . The key is to check the decay conditions for ξ . Then the decay of $\dot{\sigma}$ follows from the modulation equation.

2. Let $P^{(m,n)}(\tau)$ be the projection onto the span of the zero-unstable modes span $\{\Sigma^{(m,n)(i,j,l)}(a^{(0)}(\tau))\}$ of $L(a^{(0)}(\tau))$, and write $\xi^{(m,n)} := P^{(m,n)}\xi$. Let $Q := 1 - \sum P^{(m,n)}$ and write $\xi_S = Q\xi = \xi - \sum \xi^{(m,n)}$ (=stable projection w.r.t. $L(a^{(0)})$). Due to the modulation equation, we know

$$\xi^{(m,n)} = 0$$
 for $(m,n) = (0,0), (0,1), (1,1).$

Now we expand

$$\xi = \xi_S + \sum_{m=1,2} \xi^{(m,0)},$$

and plug this expansion into the graphical RMCF for ξ :

$$\dot{\xi} = -L(a^{(0)})\xi - N(a^{(0)},\xi^{(0)}) - \partial_{\sigma}W(\sigma^{(0)})\dot{\sigma}$$

Using the orthogonality among various eigenfunctions of the self-adjoint operator $L(a^{(0)}(\tau))$ in the space $X^{s}(a^{(0)}(\tau))$, $s \ge 2$, we get the following system:

$$\dot{\xi}_{S} - QL(a^{(0)})\xi_{S} = -QN(a^{(0)},\xi^{(0)}),$$
 (21)

$$\dot{\beta}_i - \mathbf{a}^{(0)}\beta_i = f_i, \tag{22}$$

$$\dot{\gamma}_{ij} = h_{ij}, \tag{23}$$

where

$$f_{i} = -\left\langle N(a^{(0)}, \xi^{(0)}), \Sigma^{(1,0)(i,0,0)}(a^{(0)}) \right\rangle_{a^{(0)}},$$
(24)
$$h_{ij} = -\left\langle N(a^{(0)}, \xi^{(0)}), \Sigma^{(2,0)(i,j,0)}(a^{(0)}) \right\rangle_{a^{(0)}}.$$
(25)

The initial configurations associated to (21)-(23) are resp. the three terms in the initial condition for ξ :

$$\xi(0) = \eta_0 + \beta_i \Sigma^{(1,0)(i,0,0)}(a_0) + \gamma_{ij} \Sigma^{(2,0),(i,j,0)}(a_0) \quad (\mathsf{IC}\xi)$$

Since (21)-(23) are already decoupled, in what follows we consider the Cauchy problem for ξ_S , β_i , γ_{ij} separately. First, for the equation (21) for the stable part ξ_S , we can use standard propagator estimate to show that

$$\|\xi_{\mathcal{S}}(\tau)\|_{s} \le \delta e^{-c\tau}, \quad \tau \ge 0,$$
(26)

where c is an absolute constant.

Next, applying the ODE Lemma to the equation for β

$$\dot{\beta}_i - a^{(0)}\beta_i = f_i,$$

we find that $\lim_{\tau\to\infty} \beta_i(\tau) = 0$ if and only if the initial configuration is given by

$$\beta_i(0) = -\int_0^\infty f_i(\tau')\lambda(\tau')^{-1} d\tau' \quad \left(\lambda(\tau) = e^{\int_0^\tau a(\tau')} d\tau'\right). \quad (27)$$

This integral indeed converges, since $\lambda(\tau) \ge 1$, and some nonlinear estimate that shows $|f_i(\tau)| \lesssim \langle \tau \rangle^{-4}$.

Choose $\beta_i(0)$ as in (27). Then $\beta_i(\tau)$ is given by the ODE Lemma:

$$\beta_i(\tau) = -\int_{\tau}^{\infty} f(\tau') \frac{\lambda(\tau)}{\lambda(\tau')} \, d\tau'.$$
(28)

For all $\tau \ge 0$, this function satisfies

$$\begin{aligned} |\beta_{i}(\tau)| &\leq \int_{\tau}^{\infty} \left| f_{i}(\tau') \right| e^{-\int_{\tau}^{\tau'} a} d\tau' \\ &\leq \int_{\tau}^{\infty} \left| f_{i}(\tau') \right| d\tau' \\ &\leq C \delta^{2} \left\langle \tau \right\rangle^{-3}. \end{aligned}$$
(29)

Here the last inequality follows from $|f_i| \lesssim \delta^2 \langle \tau \rangle^{-4}$, due to some nonlinear estimate as before.

We conclude from (29) that

$$|\beta_i(\mathbf{0})| \lesssim \delta^2. \tag{30}$$

This gives quadratic estimate (15).

By (29) and some technical interpolation inequalities, we conclude

$$\left\| \mathcal{P}^{(1,0)}\xi(\tau) \right\|_{s} \leq \delta \left\langle \tau \right\rangle^{-2},\tag{31}$$

provided δ is sufficiently small. Using the exact same argument we can determine the unique numbers $\gamma_{ij}(\eta) = O(\delta^2)$ that make

$$\left\| P^{(2,0)}\xi(\tau) \right\|_{s} \leq \delta \left\langle \tau \right\rangle^{-2}.$$
(32)

This proves the Choice Theorem. \Box

Thanks for your attention