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Overview

▶ Based on joint work arXiv:2203.14179 with NM Ercolani

(Tuscon) and IM Sigal (Toronto) during Spring research visit.

▶ Main result: existence theory for Ginzburg-Landau (GL)

equations on non-compact Riemann surfaces with constant

negative curvature (≡ hyperbolic surfaces).

▶ Techniques: Lyapunov-Schmidt reduction and bifurcation

analysis. No variational/Bogolmonyi structure is used.



Setup

We consider the Ginzburg-Landau equations on a line bundle E

over a Riemann surface (Σ, h):

−∆aψ = κ2
(
1− |ψ|2

)
ψ,

d∗da = Im
(
ψ̄∇aψ

)
.

(GL)

▶ κ > 0 is a fixed (dimensionless) material parameter.

▶ (ψ, a) = (section,1-form)-pair on the line bundle E .

▶ ∇a is the covariant derivative induced by a.

▶ −∆a = ∇∗
a∇a (Note that ∇∗

a depends on the metric h).

▶ d denotes the exterior derivative on Σ.



Geometric setting

Surface Σ: By the Uniformization theorem, every hyperbolic

surface Σ is of the form

Σ ∼= H/Γ.

Here H = {z ∈ C : Im z > 0} and Γ is a Fuchsian group (i.e.

discrete subgp. of SL(2,R)), acting on H by Möbius transform:

γz =
az + b

cz + d
for γ =

a b

c d

 .

Hyperbolic metric on Σ: For each r > 0, let

hr =
r

(Im z)2
dz ⊗ dz̄ =⇒ (Σ, hr ) has const. curvature − 1/r .



Assumption on Σ ∼= H/Γ

Our existence theory holds on any hyperbolic surface Σ with finite

area, finitely many cusps, and no elliptic points (which are

conditions on Γ).

Example

There exists an infinite family of distinct Σ’s with above properties:

the arithmetic surfaces Σ ∼= H/Γ(N), N ≥ 2, where

Γ(N) :=

γ =

a b

c d

 ∈ SL(2,Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

 .



Fundamental domain

A fundamental domain FΣ ⊂ H of Σ = H/Γ (Γ = a Fuchsian

group) is a connected open subset such that no two points of FΣ

are equivalent under Γ and H =
⋃

γ γF̄Σ (F̄Σ ≡ closure of FΣ).

Im z = 0
z = 0z = −1 z = 0

Figure: A fundamental domain of Γ(2) in H with three cusps.



Configuration space X k for (GL)

The point of all previous discussions is to show that existence

theory for (GL) on line bundle E → Σ is equivalent to solving (GL)

in X k ≡ X k
Σ,E , the Sobolev space of order k of (function, vector

field)-pairs on FΣ with gauge-periodic boundary conditions:

γ∗Ψ(z) = ρ(γ, z)Ψ(z),

γ∗A(z) = A(z) + iρ(γ, z)−1dρ(γ, z),

for every z ∈ ∂FΣ, γ ∈ Γ and some ρ(γ, z) : Γ×H → U(1) with

ρ(γγ′, z) = ρ(γ, γ′z)ρ(γ′, z)
(
γ, γ′ ∈ Γ, z ∈ H

)
.

The choice of ρ is determined by the topology of E .



Constant curvature solutions to GL

On E → (Σ, hr ), (GL) has the following const. curvature solutions:

ψ ≡ 0, a = ab,

where ψ is the zero-section on the line bundle E , and ab is a

constant curvature connection satisfying

dab = bωr with b = b(Σ,E , r) :=
2π deg E

|Σ|r
. (b)

The value of b in (b) is determined by the Chern-Weil relation:

1

2π

∫
Σ
da = deg E ∀gauge-periodic 1-form a with

∣∣∣∣∫
Σ
da

∣∣∣∣ <∞.



Auxiliary functions

In what follows, we fix line bundle E → Σ, and vary the metric

h = hr . So the only free parameter is r > 0 (≡curvature on Σ).

To state our main result, we define the Abrikosov function,

β = β(b(r)), as

β(r) := min
{
∥ξ∥4L4 : ξ ∈ Null(−∆ab − b), ∥ξ∥L2 = 1

}
,

and the threshold Ginzburg-Landau parameter, κc = κc(β(r)), as

κc(r) :=

√
1

2

(
1− 1

β(r)

)
.



Theorem (existence theory for GL on E → (Σ, hr ))

Let b0 := 2π deg E/ |Σ| . There exists a family of solutions

(ψs(r), as(r)), (1)

to (GL), each sitting in a nbhd. U ⊂ X k around the const.

curvature solution (0, ab0/r ), labeled by parameter r > 0 with

0 <
∣∣κ2r − b0/r

∣∣ ≪ 1, (κ−
√

b0/r)(κ− κc(r)) > 0, (C)

and

s = s(r) ∈ RD , D := dimCNull(−∆ab − b0/r)

is an analytic curve, and satisfies 0 < |s| ≪ 1.



Remarks on the main theorem

▶ The existence condition (C) was first isolated as a criterion for

the existence of the Abrikosov vortex lattice in a series of

works of Sigal-Tzaneteas’ (e.g. Contemp. Math. 2011).

▶ Condition (C) gives rise to two critical magnetic fields:

b = κ
√
b0 from the first part, and b = κ2 from the second.

▶ Physically, the number κ2r corresponds to the average

magnetic field in superconductors. Hence, condition (C) can

be compared to S. Bradlow’s existence condition for magnetic

vortices on compact Riemann surfaces.



Idea of the proof of the main theorem

Step 0: rescaling

Under a suitable rescaling, (GL) on E → (Σ, hr ) (recall −1/r < 0

is the curvature on Σ) is equivalent to the rescaled GL equations,

−∆aψ = κ2
(
r − |ψ|2

)
ψ,

d∗da = Im ψ̄∇aψ,

(RGL)

posed on the Sobolev space X k , k ≥ 2 over (FΣ, h1).

Then the proof of the main theorem consists of two-part analysis

of (RGL). First, we linearize (RGL) around the constant curvature

solution (ψ, a) = (0, ab).



Step 1: Linear analysis

The linearized problem associated to (RGL) reduces to

understanding the spectral properties of the Laplacian −∆ab

associated to a constant curvature connection ab, acting on

L2-sections of the unitary line bundle E → (Σ, h1).

Theorem (spectrum of −∆ab)

1. −∆ab ≥ b.

2. Denote by S(Σ) ≡ S2b(Σ) the space of cusp forms on Σ with

weight 2b (i.e. L2-automorphic functions with weight 2b).

Then b is an eigenvalue of −∆ab ⇐⇒ S(Σ) ̸= ∅.

3. σess(−∆ab) = [14 + b2,∞) (note that 1
4 + b2 ≥ b).



Step 2: nonlinear analysis

▶ Next, we use Lyapunov-Schmidt reduction to show that a

non-trivial branch of solution of the form bifurcates from the

constant curvature solutions, provided the metric on Σ

satisfies the main existence condition (C), and a key

bifurcation equation is satisfied.

▶ This bifurcation equation amounts to a finite system of

algebraic equations, which we solve directly using Weierstrass

Preparation Theorem and Hartogs’ extension theorem.
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